1
|
Imaizumi R, Matsuura H, Yanai T, Takeshita K, Misawa S, Yamaguchi H, Sakai N, Miyagi-Inoue Y, Suenaga-Hiromori M, Waki T, Kataoka K, Nakayama T, Yamamoto M, Takahashi S, Yamashita S. Structural-Functional Correlations between Unique N-terminal Region and C-terminal Conserved Motif in Short-chain cis-Prenyltransferase from Tomato. Chembiochem 2024; 25:e202300796. [PMID: 38225831 DOI: 10.1002/cbic.202300796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Neryl diphosphate (C10) synthase (NDPS1), a homodimeric soluble cis-prenyltransferase from tomato, contains four disulfide bonds, including two inter-subunit S-S bonds in the N-terminal region. Mutagenesis studies demonstrated that the S-S bond formation affects not only the stability of the dimer but also the catalytic efficiency of NDPS1. Structural polymorphs in the crystal structures of NDPS1 complexed with its substrate and substrate analog were identified by employing massive data collections and hierarchical clustering analysis. Heterogeneity of the C-terminal region, including the conserved RXG motifs, was observed in addition to the polymorphs of the binding mode of the ligands. One of the RXG motifs covers the active site with an elongated random coil when the ligands are well-ordered. Conversely, the other RXG motif was located away from the active site with a helical structure. The heterogeneous C-terminal regions suggest alternating structural transitions of the RXG motifs that result in closed and open states of the active sites. Site-directed mutagenesis studies demonstrated that the conserved glycine residue cannot be replaced. We propose that the putative structural transitions of the order/disorder of N-terminal regions and the closed/open states of C-terminal regions may cooperate and be important for the catalytic mechanism of NDPS1.
Collapse
Affiliation(s)
- Riki Imaizumi
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Hiroaki Matsuura
- RIKEN, SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Taro Yanai
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Kohei Takeshita
- RIKEN, SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Shuto Misawa
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | | | - Naoki Sakai
- RIKEN, SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | | | | | - Toshiyuki Waki
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Kunishige Kataoka
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Toru Nakayama
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Masaki Yamamoto
- RIKEN, SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Satoshi Yamashita
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| |
Collapse
|
2
|
Kurokawa H, Ambo T, Takahashi S, Koyama T. Crystal structure of Thermobifida fusca cis-prenyltransferase reveals the dynamic nature of its RXG motif-mediated inter-subunit interactions critical for its catalytic activity. Biochem Biophys Res Commun 2020; 532:459-465. [PMID: 32892948 DOI: 10.1016/j.bbrc.2020.08.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022]
Abstract
cis-Prenyltransferases (cis-PTs) catalyze consecutive condensations of isopentenyl diphosphate to an allylic diphosphate acceptor to produce a linear polyprenyl diphosphate of designated length. Dimer formation is a prerequisite for cis-PTs to catalyze all cis-prenyl condensation reactions. The structure-function relationship of a conserved C-terminal RXG motif in cis-PTs that forms inter-subunit interactions and has a role in catalytic activity has attracted much attention. Here, we solved the crystal structure of a medium-chain cis-PT from Thermobifida fusca that produces dodecaprenyl diphosphate as a polyprenoid glycan carrier for cell wall synthesis. The structure revealed a characteristic dimeric architecture of cis-PTs in which a rigidified RXG motif of one monomer formed inter-subunit hydrogen bonds with the catalytic site of the other monomer, while the RXG motif of the latter remained flexible. Careful analyses suggested the existence of a possible long-range negative cooperativity between the two catalytic sites on the two monomeric subunits that allowed the binding of one subunit to stabilize the formation of the enzyme-substrate ternary complex and facilitated the release of Mg-PPi and subsequent intra-molecular translocation at the counter subunit so that the condensation reaction could occur in consecutive cycles. The current structure reveals the dynamic nature of the RXG motif and provides a rationale for pursuing further investigations to elucidate the inter-subunit cooperativity of cis-PTs.
Collapse
Affiliation(s)
- Hirofumi Kurokawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
| | - Takanori Ambo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai, 980-8579, Japan
| | - Tanetoshi Koyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
3
|
Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex. Nat Commun 2020; 11:5273. [PMID: 33077723 PMCID: PMC7573591 DOI: 10.1038/s41467-020-18970-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
The human cis-prenyltransferase (hcis-PT) is an enzymatic complex essential for protein N-glycosylation. Synthesizing the precursor of the glycosyl carrier dolichol-phosphate, mutations in hcis-PT cause severe human diseases. Here, we reveal that hcis-PT exhibits a heterotetrameric assembly in solution, consisting of two catalytic dehydrodolichyl diphosphate synthase (DHDDS) and inactive Nogo-B receptor (NgBR) heterodimers. Importantly, the 2.3 Å crystal structure reveals that the tetramer assembles via the DHDDS C-termini as a dimer-of-heterodimers. Moreover, the distal C-terminus of NgBR transverses across the interface with DHDDS, directly participating in active-site formation and the functional coupling between the subunits. Finally, we explored the functional consequences of disease mutations clustered around the active-site, and in combination with molecular dynamics simulations, we propose a mechanism for hcis-PT dysfunction in retinitis pigmentosa. Together, our structure of the hcis-PT complex unveils the dolichol synthesis mechanism and its perturbation in disease. The human cis-prenyltransferase (hcis-PT) complex synthesizes the precursor of the glycosyl carrier dolichol-phosphate and as such it is essential for protein N-glycosylation. The crystal structure of the complex reveals unusual tetrameric architecture and provides insights into dolichol synthesis mechanism and functional consequences of disease-associated hcis-PT mutations.
Collapse
|
4
|
Edani BH, Grabińska KA, Zhang R, Park EJ, Siciliano B, Surmacz L, Ha Y, Sessa WC. Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc Natl Acad Sci U S A 2020; 117:20794-20802. [PMID: 32817466 PMCID: PMC7456142 DOI: 10.1073/pnas.2008381117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids required for protein glycosylation in the lumen of endoplasmic reticulum. Here, we report the crystal structure of the human NgBR/DHDDS complex, which represents an atomic resolution structure for any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through dimerization, participates in the enzyme's active site through its C-terminal -RXG- motif, and how phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme's active site tunnel, and an insert within the α3 helix helps to stabilize this energetically unfavorable state to enable long-chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases have evolved from their ancestral, homodimeric forms to fulfill their function in long-chain polyprenol synthesis.
Collapse
Affiliation(s)
- Ban H Edani
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Kariona A Grabińska
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Rong Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Benjamin Siciliano
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Ya Ha
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520;
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520;
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
5
|
Chen CC, Zhang L, Yu X, Ma L, Ko TP, Guo RT. Versatile cis-isoprenyl Diphosphate Synthase Superfamily Members in Catalyzing Carbon–Carbon Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
6
|
Ma J, Ko TP, Yu X, Zhang L, Ma L, Zhai C, Guo RT, Liu W, Li H, Chen CC. Structural insights to heterodimeric cis-prenyltransferases through yeast dehydrodolichyl diphosphate synthase subunit Nus1. Biochem Biophys Res Commun 2019; 515:621-626. [DOI: 10.1016/j.bbrc.2019.05.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022]
|