1
|
Ye Q, Eves R, Vance TDR, Hansen T, Sage AP, Petkovic A, Bradley B, Escobedo C, Graham LA, Allingham JS, Davies PL. Aeromonas hydrophila RTX adhesin has three ligand-binding domains that give the bacterium the potential to adhere to and aggregate a wide variety of cell types. mBio 2025:e0315824. [PMID: 40243363 DOI: 10.1128/mbio.03158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteria often make initial contact with their hosts through the ligand-binding domains of large adhesin proteins. Recent analyses of repeats-in-toxin (RTX) adhesins in Gram-negative bacteria suggest that ligand-binding domains can be identified by the way they emerge from "split" domains within the adhesin. Here, using this criterion and an AlphaFold3 model of a 5047-residue RTX adhesin from Aeromonas hydrophila, we identified three different ligand-binding domains in this fibrillar protein. The crystal structures of the two novel domains were solved to 1.4 and 1.95 Å resolution, respectively, and demonstrate excellent agreement with their modeled structures. The other domain was recognized as a carbohydrate-binding module based on its beta-strand topology and confirmed by its micromolar affinity for fucosylated glycans, including the Lewis B and Y antigens. This lectin-like module, which was recombinantly produced with its companion split domain and nearby extender domain, bound to a wide variety of cells including yeasts, diatoms, erythrocytes, and human endothelial cells. In each case, 50 mM free fucose prevented this binding and may offer some protection from infection. The carbohydrate-binding module with its neighboring domains also caused aggregation of yeast and erythrocytes, which was again blocked by the addition of free fucose. The second putative ligand-binding domain has a beta-roll structure supported by a parallel alpha-helix, and the third is a homolog of a von Willebrand Factor A domain. These two domains bind to a more limited range of cell types, and their ligands have yet to be identified.IMPORTANCECharacterizing the ligand-binding domains of fibrillar adhesins is important for understanding how bacteria can colonize host surfaces and how this colonization might be blocked. Here, we show that the opportunistic pathogen, Aeromonas hydrophila, uses a carbohydrate-binding module (CBM) to attach to several different cell types. The CBM is one of three ligand-binding domains at the distal tip of the adhesin. Identifying the glycans bound by the CBM as Lewis B and Y antigens has helped explain the range of cell types that the bacterium will bind and colonize, and it has suggested sugars that might interfere with these processes. Indeed, fucose, which is a constituent of the Lewis B and Y antigens, is effective at 50 mM concentrations in blocking the attachment of the CBM to host cells. This will lead to the design of more effective inhibitors against bacterial infections.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tyler D R Vance
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adam P Sage
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Andrea Petkovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brianna Bradley
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Carlos Escobedo
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Basit A, Choudhury D, Bandyopadhyay P. Prediction of Ca 2+ Binding Site in Proteins With a Fast and Accurate Method Based on Statistical Mechanics and Analysis of Crystal Structures. Proteins 2025; 93:482-497. [PMID: 39258438 DOI: 10.1002/prot.26743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Predicting the precise locations of metal binding sites within metalloproteins is a crucial challenge in biophysics. A fast, accurate, and interpretable computational prediction method can complement the experimental studies. In the current work, we have developed a method to predict the location of Ca2+ ions in calcium-binding proteins using a physics-based method with an all-atom description of the proteins, which is substantially faster than the molecular dynamics simulation-based methods with accuracy as good as data-driven approaches. Our methodology uses the three-dimensional reference interaction site model (3D-RISM), a statistical mechanical theory, to calculate Ca2+ ion density around protein structures, and the locations of the Ca2+ ions are obtained from the density. We have taken previously used datasets to assess the efficacy of our method as compared to previous works. Our accuracy is 88%, comparable with the FEATURE program, one of the well-known data-driven methods. Moreover, our method is physical, and the reasons for failures can be ascertained in most cases. We have thoroughly examined the failed cases using different structural and crystallographic measures, such as B-factor, R-factor, electron density map, and geometry at the binding site. It has been found that x-ray structures have issues in many of the failed cases, such as geometric irregularities and dubious assignment of ion positions. Our algorithm, along with the checks for structural accuracy, is a major step in predicting calcium ion positions in metalloproteins.
Collapse
Affiliation(s)
- Abdul Basit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Guo S, Zahiri H, Stevens C, Spaanderman DC, Milroy LG, Ottmann C, Brunsveld L, Voets IK, Davies PL. Molecular basis for inhibition of adhesin-mediated bacterial-host interactions through a peptide-binding domain. Cell Rep 2021; 37:110002. [PMID: 34788627 DOI: 10.1016/j.celrep.2021.110002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Infections typically begin with pathogens adhering to host cells. For bacteria, this adhesion can occur through specific ligand-binding domains. We identify a 20-kDa peptide-binding domain (PBD) in a 1.5-MDa RTX adhesin of a Gram-negative marine bacterium that colonizes diatoms. The crystal structure of this Ca2+-dependent PBD suggests that it may bind the C termini of host cell-surface proteins. A systematic peptide library analysis reveals an optimal tripeptide sequence with 30-nM affinity for the PBD, and X-ray crystallography details its peptide-protein interactions. Binding of the PBD to the diatom partner of the bacteria can be inhibited or competed away by the peptide, providing a molecular basis for inhibiting bacterium-host interactions. We further show that this PBD is found in other bacteria, including human pathogens such as Vibrio cholerae and Aeromonas veronii. Here, we produce the PBD ortholog from A. veronii and demonstrate, using the same peptide inhibitor, how pathogens may be prevented from adhering to their hosts.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Hossein Zahiri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Corey Stevens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Daniel C Spaanderman
- Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
4
|
Vance TDR, Ye Q, Conroy B, Davies PL. Essential role of calcium in extending RTX adhesins to their target. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100036. [PMID: 32984811 PMCID: PMC7493085 DOI: 10.1016/j.yjsbx.2020.100036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
Elongated beta-sandwich repeats are a major part of bacterial RTX adhesins. The repeats are arranged in tandem to extend away from the bacterial surface. Calcium ions are coordinated in the linkers between repeats to stiffen the protein. Rigidification of the tandem repeats further helps extension of the adhesin. The repeats differ greatly between species, but all have Ca2+ in their linkers.
RTX adhesins are long, multi-domain proteins present on the outer membrane of many Gram-negative bacteria. From this vantage point, adhesins use their distal ligand-binding domains for surface attachment leading to biofilm formation. To expand the reach of the ligand-binding domains, RTX adhesins maintain a central extender region of multiple tandem repeats, which makes up most of the proteins’ large molecular weight. Alignments of the 10-15-kDa extender domains show low sequence identity between adhesins. Here we have produced and structurally characterized protein constructs of four tandem repeats (tetra-tandemers) from two different RTX adhesins. In comparing the tetra-tandemers to each other and already solved structures from Marinomonas primoryensis and Salmonella enterica, the extender domains fold as diverse beta-sandwich structures with widely differing calcium contents. However, all the tetra-tandemers have at least one calcium ion coordinated in the linker region between beta-sandwich domains whose role appears to be the rigidification of the extender region to help the adhesin extend its reach.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Qilu Ye
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Brigid Conroy
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| |
Collapse
|