1
|
Michel F, Romero‐Romero S, Höcker B. Retracing the evolution of a modern periplasmic binding protein. Protein Sci 2023; 32:e4793. [PMID: 37788980 PMCID: PMC10601554 DOI: 10.1002/pro.4793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Investigating the evolution of structural features in modern multidomain proteins helps to understand their immense diversity and functional versatility. The class of periplasmic binding proteins (PBPs) offers an opportunity to interrogate one of the main processes driving diversification: the duplication and fusion of protein sequences to generate new architectures. The symmetry of their two-lobed topology, their mechanism of binding, and the organization of their operon structure led to the hypothesis that PBPs arose through a duplication and fusion event of a single common ancestor. To investigate this claim, we set out to reverse the evolutionary process and recreate the structural equivalent of a single-lobed progenitor using ribose-binding protein (RBP) as our model. We found that this modern PBP can be deconstructed into its lobes, producing two proteins that represent possible progenitor halves. The isolated halves of RBP are well folded and monomeric proteins, albeit with a lower thermostability, and do not retain the original binding function. However, the two entities readily form a heterodimer in vitro and in-cell. The x-ray structure of the heterodimer closely resembles the parental protein. Moreover, the binding function is fully regained upon formation of the heterodimer with a ligand affinity similar to that observed in the modern RBP. This highlights how a duplication event could have given rise to a stable and functional PBP-like fold and provides insights into how more complex functional structures can evolve from simpler molecular components.
Collapse
Affiliation(s)
- Florian Michel
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
2
|
Michel F, Shanmugaratnam S, Romero-Romero S, Höcker B. Structures of permuted halves of a modern ribose-binding protein. Acta Crystallogr D Struct Biol 2023; 79:40-49. [PMID: 36601806 PMCID: PMC9815098 DOI: 10.1107/s205979832201186x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Periplasmic binding proteins (PBPs) are a class of proteins that participate in the cellular transport of various ligands. They have been used as model systems to study mechanisms in protein evolution, such as duplication, recombination and domain swapping. It has been suggested that PBPs evolved from precursors half their size. Here, the crystal structures of two permuted halves of a modern ribose-binding protein (RBP) from Thermotoga maritima are reported. The overexpressed proteins are well folded and show a monomer-dimer equilibrium in solution. Their crystal structures show partially noncanonical PBP-like fold type I conformations with structural deviations from modern RBPs. One of the half variants forms a dimer via segment swapping, suggesting a high degree of malleability. The structural findings on these permuted halves support the evolutionary hypothesis that PBPs arose via a duplication event of a flavodoxin-like protein and further support a domain-swapping step that might have occurred during the evolution of the PBP-like fold, a process that is necessary to generate the characteristic motion of PBPs essential to perform their functions.
Collapse
Affiliation(s)
- Florian Michel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | | | | | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany,Correspondence e-mail:
| |
Collapse
|
3
|
Structural insights into the mechanism of archaellar rotational switching. Nat Commun 2022; 13:2857. [PMID: 35606361 PMCID: PMC9126983 DOI: 10.1038/s41467-022-30358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Signal transduction via phosphorylated CheY towards the flagellum and the archaellum involves a conserved mechanism of CheY phosphorylation and subsequent conformational changes within CheY. This mechanism is conserved among bacteria and archaea, despite substantial differences in the composition and architecture of archaellum and flagellum, respectively. Phosphorylated CheY has higher affinity towards the bacterial C-ring and its binding leads to conformational changes in the flagellar motor and subsequent rotational switching of the flagellum. In archaea, the adaptor protein CheF resides at the cytoplasmic face of the archaeal C-ring formed by the proteins ArlCDE and interacts with phosphorylated CheY. While the mechanism of CheY binding to the C-ring is well-studied in bacteria, the role of CheF in archaea remains enigmatic and mechanistic insights are absent. Here, we have determined the atomic structures of CheF alone and in complex with activated CheY by X-ray crystallography. CheF forms an elongated dimer with a twisted architecture. We show that CheY binds to the C-terminal tail domain of CheF leading to slight conformational changes within CheF. Our structural, biochemical and genetic analyses reveal the mechanistic basis for CheY binding to CheF and allow us to propose a model for rotational switching of the archaellum. Signal transduction via phosphorylated CheY is conserved in bacteria and archaea. In this study, the authors employ structural biochemistry combined with cell biology to delineate the mechanism of CheY recognition by the adaptor protein CheF.
Collapse
|
4
|
Tran LH, Urbanowicz A, Jasiński M, Jaskolski M, Ruszkowski M. 3D Domain Swapping Dimerization of the Receiver Domain of Cytokinin Receptor CRE1 From Arabidopsis thaliana and Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:756341. [PMID: 34630499 PMCID: PMC8498639 DOI: 10.3389/fpls.2021.756341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Cytokinins are phytohormones regulating many biological processes that are vital to plants. CYTOKININ RESPONSE1 (CRE1), the main cytokinin receptor, has a modular architecture composed of a cytokinin-binding CHASE (Cyclases/Histidine kinases Associated Sensory Extracellular) domain, followed by a transmembrane fragment, an intracellular histidine kinase (HK) domain, and a receiver domain (REC). Perception of cytokinin signaling involves (i) a hormone molecule binding to the CHASE domain, (ii) CRE1 autophosphorylation at a conserved His residue in the HK domain, followed by a phosphorelay to (iii) a conserved Asp residue in the REC domain, (iv) a histidine-containing phosphotransfer protein (HPt), and (v) a response regulator (RR). This work focuses on the crystal structures of the REC domain of CRE1 from the model plant Arabidopsis thaliana and from the model legume Medicago truncatula. Both REC domains form tight 3D-domain-swapped dimers. Dimerization of the REC domain agrees with the quaternary assembly of the entire CRE1 but is incompatible with a model of its complex with HPt, suggesting that a considerable conformational change should occur to enable the signal transduction. Indeed, phosphorylation of the REC domain can change the HPt-binding properties of CRE1, as shown by functional studies.
Collapse
Affiliation(s)
- Linh H. Tran
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Jasiński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznań, Poland
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
5
|
Romero-Romero S, Kordes S, Michel F, Höcker B. Evolution, folding, and design of TIM barrels and related proteins. Curr Opin Struct Biol 2021; 68:94-104. [PMID: 33453500 PMCID: PMC8250049 DOI: 10.1016/j.sbi.2020.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Proteins are chief actors in life that perform a myriad of exquisite functions. This diversity has been enabled through the evolution and diversification of protein folds. Analysis of sequences and structures strongly suggest that numerous protein pieces have been reused as building blocks and propagated to many modern folds. This information can be traced to understand how the protein world has diversified. In this review, we discuss the latest advances in the analysis of protein evolutionary units, and we use as a model system one of the most abundant and versatile topologies, the TIM-barrel fold, to highlight the existing common principles that interconnect protein evolution, structure, folding, function, and design.
Collapse
Affiliation(s)
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Florian Michel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
6
|
Jarrell KF, Albers SV, Machado JNDS. A comprehensive history of motility and Archaellation in Archaea. FEMS MICROBES 2021; 2:xtab002. [PMID: 37334237 PMCID: PMC10117864 DOI: 10.1093/femsmc/xtab002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 08/24/2023] Open
Abstract
Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sonja-Verena Albers
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - J Nuno de Sousa Machado
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| |
Collapse
|
7
|
Ghanbarpour A, Santos EM, Pinger C, Assar Z, Hossaini Nasr S, Vasileiou C, Spence D, Borhan B, Geiger JH. Human Cellular Retinol Binding Protein II Forms a Domain-Swapped Trimer Representing a Novel Fold and a New Template for Protein Engineering. Chembiochem 2020; 21:3192-3196. [PMID: 32608180 PMCID: PMC8220890 DOI: 10.1002/cbic.202000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/29/2020] [Indexed: 11/07/2022]
Abstract
Domain-swapping is a mechanism for evolving new protein structure from extant scaffolds, and has been an efficient protein-engineering strategy for tailoring functional diversity. However, domain swapping can only be exploited if it can be controlled, especially in cases where various folds can coexist. Herein, we describe the structure of a domain-swapped trimer of the iLBP family member hCRBPII, and suggest a mechanism for domain-swapped trimerization. It is further shown that domain-swapped trimerization can be favored by strategic installation of a disulfide bond, thus demonstrating a strategy for fold control. We further show the domain-swapped trimer to be a useful protein design template by installing a high-affinity metal binding site through the introduction of a single mutation, taking advantage of its threefold symmetry. Together, these studies show how nature can promote oligomerization, stabilize a specific oligomer, and generate new function with minimal changes to the protein sequence.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
- Yale University Medical School, Department of Cell Biology, 333 S. Cedar Street, New Haven, CT 06510, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
- Dow Performance Silicones, 2200W Salzburg Road, Midland, MI 48686, USA
| | - Cody Pinger
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48823, USA
| | - Zahra Assar
- Cayman Chemical, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Dana Spence
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48823, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Li Z, Rodriguez‐Franco M, Albers S, Quax TEF. The switch complex ArlCDE connects the chemotaxis system and the archaellum. Mol Microbiol 2020; 114:468-479. [PMID: 32416640 PMCID: PMC7534055 DOI: 10.1111/mmi.14527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Cells require a sensory system and a motility structure to achieve directed movement. Bacteria and archaea possess rotating filamentous motility structures that work in concert with the sensory chemotaxis system. This allows microorganisms to move along chemical gradients. The central response regulator protein CheY can bind to the motor of the motility structure, the flagellum in bacteria, and the archaellum in archaea. Both motility structures have a fundamentally different protein composition and structural organization. Yet, both systems receive input from the chemotaxis system. So far, it was unknown how the signal is transferred from the archaeal CheY to the archaellum motor to initiate motor switching. We applied a fluorescent microscopy approach in the model euryarchaeon Haloferax volcanii and shed light on the sequence order in which signals are transferred from the chemotaxis system to the archaellum. Our findings indicate that the euryarchaeal-specific ArlCDE are part of the archaellum motor and that they directly receive input from the chemotaxis system via the adaptor protein CheF. Hence, ArlCDE are an important feature of the archaellum of euryarchaea, are essential for signal transduction during chemotaxis and represent the archaeal switch complex.
Collapse
Affiliation(s)
- Zhengqun Li
- Molecular Biology of Archaea, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | | | - Sonja‐Verena Albers
- Molecular Biology of Archaea, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Tessa E. F. Quax
- Archaeal Virus–Host Interactions, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| |
Collapse
|
9
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
10
|
van Raaij MJ, Newman J. Taking biological structure communications into the third dimension. Acta Crystallogr F Struct Biol Commun 2019; 75:663-664. [PMID: 31702579 PMCID: PMC6839818 DOI: 10.1107/s2053230x19014754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Editors of Acta Cryst. F describe a new feature that will add an extra dimension to the journal.
Collapse
Affiliation(s)
- Mark J. van Raaij
- Department of Molecular Structure, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, E-28049, Spain
| | - Janet Newman
- Collaborative Crystallisation Centre (C3), CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|