1
|
Yagi S, Tagami S. An ancestral fold reveals the evolutionary link between RNA polymerase and ribosomal proteins. Nat Commun 2024; 15:5938. [PMID: 39025855 PMCID: PMC11258233 DOI: 10.1038/s41467-024-50013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Numerous molecular machines are required to drive the central dogma of molecular biology. However, the means by which these numerous proteins emerged in the early evolutionary stage of life remains enigmatic. Many of them possess small β-barrel folds with different topologies, represented by double-psi β-barrels (DPBBs) conserved in DNA and RNA polymerases, and similar but topologically distinct six-stranded β-barrel RIFT or five-stranded β-barrel folds such as OB and SH3 in ribosomal proteins. Here, we discover that the previously reconstructed ancient DPBB sequence could also adopt a β-barrel fold named Double-Zeta β-barrel (DZBB), as a metamorphic protein. The DZBB fold is not found in any modern protein, although its structure shares similarities with RIFT and OB. Indeed, DZBB could be transformed into them through simple engineering experiments. Furthermore, the OB designs could be further converted into SH3 by circular-permutation as previously predicted. These results indicate that these β-barrels diversified quickly from a common ancestor at the beginning of the central dogma evolution.
Collapse
Affiliation(s)
- Sota Yagi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Faculty of Human Sciences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| | - Shunsuke Tagami
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
2
|
Hamana H, Yasutake Y, Kato-Murayama M, Hosaka T, Shirouzu M, Sakasegawa SI, Sugimori D, Murayama K. Structural basis for the substrate specificity switching of lysoplasmalogen-specific phospholipase D from Thermocrispum sp. RD004668. Biosci Biotechnol Biochem 2022; 87:74-81. [PMID: 36307380 DOI: 10.1093/bbb/zbac169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Lysoplasmalogen-specific phospholipase D (LyPls-PLD) hydrolyzes choline lysoplasmalogen to choline and 1-(1-alkenyl)-sn-glycero-3-phosphate. Mutation of F211 to leucine altered its substrate specificity from lysoplasmalogen to 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). Enzymes specific to lysoPAF have good potential for clinical application, and understanding the mechanism of their activity is important. The crystal structure of LyPls-PLD exhibited a TIM barrel fold assigned to glycerophosphocholine phosphodiesterase, a member of glycerophosphodiester phosphodiesterase. LyPls-PLD possesses a hydrophobic cleft for the binding of the aliphatic chain of the substrate. In the structure of the F211L mutant, Met232 and Tyr258 form a "small lid" structure that stabilizes the binding of the aliphatic chain of the substrate. In contrast, F211 may inhibit small lid formation in the wild-type structure. LysoPAF possesses a flexible aliphatic chain; therefore, a small lid is effective for stabilizing the substrate during catalytic reactions.
Collapse
Affiliation(s)
- Hiroaki Hamana
- Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba, Sendai, Japan
| | - Yoshiaki Yasutake
- Applied Molecular Microbiology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, 3-4-1 Okubo, Shinjuku, Tokyo, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama, Japan
| | | | - Daisuke Sugimori
- Materials Science Course, Faculty of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba, Sendai, Japan.,Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama, Japan
| |
Collapse
|
3
|
Okumura H, Sakai N, Murakami H, Mizuno N, Nakamura Y, Ueno G, Masunaga T, Kawamura T, Baba S, Hasegawa K, Yamamoto M, Kumasaka T. In situ crystal data-collection and ligand-screening system at SPring-8. Acta Crystallogr F Struct Biol Commun 2022; 78:241-251. [PMID: 35647681 PMCID: PMC9158660 DOI: 10.1107/s2053230x22005283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
An in situ X-ray diffraction measurement system using a crystallization plate has been constructed at the SPring-8 protein crystallography beamline. Utilizing small-wedge measurements and incorporating a liquid dispenser to prepare protein–ligand complex crystals, this system will make ligand screening possible. In situ diffraction data collection using crystallization plates has been utilized for macromolecules to evaluate crystal quality without requiring additional sample treatment such as cryocooling. Although it is difficult to collect complete data sets using this technique due to the mechanical limitation of crystal rotation, recent advances in methods for data collection from multiple crystals have overcome this issue. At SPring-8, an in situ diffraction measurement system was constructed consisting of a goniometer for a plate, an articulated robot and plate storage. Using this system, complete data sets were obtained utilizing the small-wedge measurement method. Combining this system with an acoustic liquid handler to prepare protein–ligand complex crystals by applying fragment compounds to trypsin crystals for in situ soaking, binding was confirmed for seven out of eight compounds. These results show that the system functioned properly to collect complete data for structural analysis and to expand the capability for ligand screening in combination with a liquid dispenser.
Collapse
|
4
|
Baba S, Matsuura H, Kawamura T, Sakai N, Nakamura Y, Kawano Y, Mizuno N, Kumasaka T, Yamamoto M, Hirata K. Guidelines for de novo phasing using multiple small-wedge data collection. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1284-1295. [PMID: 34475278 PMCID: PMC8415328 DOI: 10.1107/s1600577521008067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/05/2021] [Indexed: 05/30/2023]
Abstract
Intense micro-focus X-ray beamlines available at synchrotron facilities have achieved high-quality data collection even from the microcrystals of membrane proteins. The automatic data collection system developed at SPring-8, named ZOO, has contributed to many structure determinations of membrane proteins using small-wedge synchrotron crystallography (SWSX) datasets. The `small-wedge' (5-20°) datasets are collected from multiple crystals and then merged to obtain the final structure factors. To our knowledge, no systematic investigation on the dose dependence of data accuracy has so far been reported for SWSX, which is between `serial crystallography' and `rotation crystallography'. Thus, herein, we investigated the optimal dose conditions for experimental phasing with SWSX. Phase determination using anomalous scattering signals was found to be more difficult at higher doses. Furthermore, merging more homogeneous datasets grouped by hierarchical clustering with controlled doses mildly reduced the negative factors in data collection, such as `lack of signal' and `radiation damage'. In turn, as more datasets were merged, more probable phases could be obtained across a wider range of doses. Therefore, our findings show that it is essential to choose a lower dose than 10 MGy for de novo structure determination by SWSX. In particular, data collection using a dose of 5 MGy proved to be optimal in balancing the amount of signal available while reducing the amount of damage as much as possible.
Collapse
Affiliation(s)
- Seiki Baba
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kawamura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Naoki Sakai
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yuki Nakamura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yoshiaki Kawano
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Masaki Yamamoto
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|