1
|
Acevedo-López J, González-Madrid G, Navarro CA, Jerez CA. Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus. Microorganisms 2024; 12:2627. [PMID: 39770829 PMCID: PMC11677633 DOI: 10.3390/microorganisms12122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Polyphosphates are biopolymers composed of phosphate monomers linked by high-energy phosphoanhydride bonds. They are present across all life domains, serving as a source of energy, metal chelators, and playing a crucial role in stress defense. In Escherichia coli, polyphosphates also function as inorganic molecular chaperones. The present study aims to investigate whether polyphosphate serves a similar chaperone function in archaea, using Saccharolobus solfataricus as a model organism. To this end, polyphosphate was extracted and quantified, the ADP/ATP ratio was determined, insoluble protein extracts were analyzed at different time points after copper exposure, and qPCR was performed to measure the expression of stress-related genes. PolyP was extracted after exposing the archaeon S. solfataricus to different copper concentrations. We determined that polyP degradation is directly correlated with metal concentration. At the minimum inhibitory concentration (MIC) of 2 mM Cu2+, polyP degradation stabilized 2 h after exposure and showed no recovery even after 24 h. The ADP/ATP ratio was measured and showed differences in the presence or absence of polyP. The analysis of proteins precipitated under copper stress showed a higher proportion of insoluble proteins at an elevated metal concentration. On the other hand, increased protein precipitation was detected in the absence of polyP. Gene expression analysis via qPCR was conducted to assess the expression of genes involved in chaperone and chaperonin production, copper resistance, oxidative stress response, and phosphate metabolism under prolonged copper exposure, both in the presence and absence of polyP. The results indicated an upregulation of all the chaperonins measured in the presence of polyP. Interestingly, just some of these genes were upregulated in polyP's absence. Despite copper stress, there was no upregulation of superoxide dismutase in our conditions. These results highlight the role of polyP in the copper stress response in S. solfataricus, particularly to prevent protein precipitation, likely due to its function as an inorganic chaperone. Additionally, the observed protein precipitation could be attributable to interactions between copper and some amino acids on the protein structures rather than oxidative stress induced by copper exposure, as previously described in E. coli. Our present findings provide new insights into the protective role of polyP as an inorganic chaperone in S. solfataricus and emphasize its importance in maintaining cellular homeostasis under metal stress conditions.
Collapse
Affiliation(s)
| | | | | | - Carlos A. Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile; (J.A.-L.); (G.G.-M.)
| |
Collapse
|
2
|
Furr M, Badiee SA, Basha S, Agrawal S, Alraawi Z, Heng S, Stacy C, Ahmed Y, Moradi M, Kumar TKS, Ceballos RM. Structural Stability Comparisons Between Natural and Engineered Group II Chaperonins: Are Crenarchaeal "Heat Shock" Proteins Also "pH Shock" Resistant? Microorganisms 2024; 12:2348. [PMID: 39597738 PMCID: PMC11596651 DOI: 10.3390/microorganisms12112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Archaeal group II chaperonins, also known as heat shock proteins (HSPs), are abundantly expressed in Sulfolobales. HSPα and HSPβ gene expression is upregulated during thermal shock. HSPs form large 18-mer complexes that assist in folding nascent proteins and protecting resident proteins during thermal stress. Engineered HSPs have been designed for industrial applications. Since temperature flux in the geothermal habitats of Sulfolobales impacts intracellular temperature, it follows that HSPs have developed thermotolerance. However, despite the low pH (i.e., pH < 4) typical for these habitats, intracellular pH in Sulfolobales is maintained at ~6.5. Therefore, it is not presumed that HSPs have evolved acid-tolerance. To test tolerance to low pH, HSPs were studied at various pH and temperature values. Both circular dichroism and intrinsic fluorescence indicate that HSPα and HSPβ retain structural integrity at neutral pH over a wide range of temperatures. Structural integrity is compromised for all HSPs at ultra-low pH (e.g., pH 2). Secondary structures in HSPs are resilient under mildly acidic conditions (pH 4) but Anilino naphthalene 8-sulfonate binding shows shifts in tertiary structure at lower pH. Trypsin digestion shows that the HSPβ-coh backbone is the most flexible and HSPβ is the most resilient. Overall, results suggest that HSPα and HSPβ exhibit greater thermostability than HSPβ-coh and that there are limits to HSP acid-tolerance. Molecular dynamics (MD) simulations complement the wet lab data. Specifically, MD suggests that the HSPβ secondary structure is the most stable. Also, despite similarities in pH- and temperature-dependent behavior, there are clear differences in how each HSP subtype is perturbed.
Collapse
Affiliation(s)
- Mercede Furr
- Department of Biology, University of Arkansas, Fayetteville, AR 72701, USA; (M.F.); (S.B.)
| | - Shadi A. Badiee
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
| | - Sreenivasulu Basha
- Department of Biology, University of Arkansas, Fayetteville, AR 72701, USA; (M.F.); (S.B.)
| | - Shilpi Agrawal
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
| | - Zeina Alraawi
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
| | - Sobroney Heng
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA;
| | - Carson Stacy
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (C.S.); (Y.A.)
| | - Yeasin Ahmed
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (C.S.); (Y.A.)
| | - Mahmoud Moradi
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (C.S.); (Y.A.)
| | - Thallapuranam K. S. Kumar
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (C.S.); (Y.A.)
| | - Ruben Michael Ceballos
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA;
- Quantitative Systems Biology Program, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
3
|
Sobti M, Ueno H, Brown SHJ, Noji H, Stewart AG. The series of conformational states adopted by rotorless F 1-ATPase during its hydrolysis cycle. Structure 2024; 32:393-399.e3. [PMID: 38237595 DOI: 10.1016/j.str.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 04/07/2024]
Abstract
F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalytic mechanism and isolated F1-ATPase subcomplexes can also hydrolyze ATP to generate rotation of their central γ rotor subunit. As ATP is hydrolyzed, the F1-ATPase cycles through a series of conformational states that mediates unidirectional rotation of the rotor. However, even in the absence of a rotor, the α and β subunits are still able to pass through a series of conformations, akin to those that generate rotation. Here, we use cryoelectron microscopy to establish the structures of these rotorless states. These structures indicate that cooperativity in this system is likely mediated by contacts between the β subunit lever domains, irrespective of the presence of the γ rotor subunit. These findings provide insight into how long-range information may be transferred in large biological systems.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Hiroshi Ueno
- Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Simon H J Brown
- Molecular Horizons, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Hiroyuki Noji
- Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|