1
|
Explicit molecular dynamics simulation studies to discover novel natural compound analogues as Mycobacterium tuberculosis inhibitors. Heliyon 2023; 9:e13324. [PMID: 36816262 PMCID: PMC9932657 DOI: 10.1016/j.heliyon.2023.e13324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) in one of the dreadful diseases present globally. This is caused by Mycobacterium tuberculosis. Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS) is an essential enzyme in biotin biosynthesis and is an ideal target to design and develop novel inhibitors. In order to effectively combat this disease six natural compound (butein) analogues were subjected to molecular docking to determine their binding mode and the binding affinities. The resultant complex structures were subjected to 500 ns simulation run to estimate their binding stabilities using GROMACS. The molecular dynamics simulation studies provided essential evidence that the systems were stable during the progression of 500 ns simulation run. The root mean square deviation (RMSD) of all the systems was found to be below 0.3 nm stating that the systems are well converged. The radius of gyration (Rg) profiles indicated that the systems were highly compact without any major fluctuations. The principle component analysis (PCA) and Gibbs energy landscape studies have revealed that the comp3, comp5 and comp11 systems navigated marginally through the PC2. The intermolecular interactions have further demonstrated that all the compounds have displayed key residue interactions, firmly holding the ligands at the binding pocket. The residue Lys37 was found consistently to interact with all the ligands highlighting its potential role in inhibiting the MtDTBS. Our investigation further put forth two novel compounds (comp10 and comp11) as putative antituberculosis agents. Collectively, we propose six compounds has plausible inhibitors to curtail TB and further can act as scaffolds in designing new compounds.
Collapse
|
2
|
Schumann NC, Lee KJ, Thompson AP, Salaemae W, Pederick JL, Avery T, Gaiser BI, Hodgkinson-Bean J, Booker GW, Polyak SW, Bruning JB, Wegener KL, Abell AD. Inhibition of Mycobacterium tuberculosis Dethiobiotin Synthase ( MtDTBS): Toward Next-Generation Antituberculosis Agents. ACS Chem Biol 2021; 16:2339-2347. [PMID: 34533923 DOI: 10.1021/acschembio.1c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis dethiobiotin synthase (MtDTBS) is a crucial enzyme involved in the biosynthesis of biotin in the causative agent of tuberculosis, M. tuberculosis. Here, we report a binder of MtDTBS, cyclopentylacetic acid 2 (KD = 3.4 ± 0.4 mM), identified via in silico screening. X-ray crystallography showed that 2 binds in the 7,8-diaminopelargonic acid (DAPA) pocket of MtDTBS. Appending an acidic group to the para-position of the aromatic ring of the scaffold revealed compounds 4c and 4d as more potent binders, with KD = 19 ± 5 and 17 ± 1 μM, respectively. Further optimization identified tetrazole 7a as a particularly potent binder (KD = 57 ± 5 nM) and inhibitor (Ki = 5 ± 1 μM) of MtDTBS. Our findings highlight the first reported inhibitors of MtDTBS and serve as a platform for the further development of potent inhibitors and novel therapeutics for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Nicholas C. Schumann
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kwang Jun Lee
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew P. Thompson
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Wanisa Salaemae
- Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jordan L. Pederick
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Thomas Avery
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Birgit I. Gaiser
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
| | - James Hodgkinson-Bean
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Grant W. Booker
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steven W. Polyak
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B. Bruning
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kate L. Wegener
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Bockman MR, Mishra N, Aldrich CC. The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents. Curr Med Chem 2020; 27:4194-4232. [PMID: 30663561 DOI: 10.2174/0929867326666190119161551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.
Collapse
Affiliation(s)
- Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
4
|
Thompson AP, Salaemae W, Pederick JL, Abell AD, Booker GW, Bruning JB, Wegener KL, Polyak SW. Mycobacterium tuberculosis Dethiobiotin Synthetase Facilitates Nucleoside Triphosphate Promiscuity through Alternate Binding Modes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew P. Thompson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wanisa Salaemae
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jordan L. Pederick
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP) and Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Grant W. Booker
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kate L. Wegener
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|