1
|
Hu P, van Loosdrecht M, Gu JD, Yang Y. The core anammox redox reaction system of 12 anammox bacterial genera and their evolution and application implications. WATER RESEARCH 2025; 281:123551. [PMID: 40187147 DOI: 10.1016/j.watres.2025.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Anaerobic ammonium-oxidation (anammox) is a typical redox reaction driven by membrane electron transformation. However, the electron transfer mechanism of the core redox reaction and its evolutionary origins are still not thoroughly identified. In this study, a preliminary analysis was conducted for such interaction based on the 64 anammox bacterial genomes representing 12 genera available currently. The results suggested that enzymes involved in anammox reaction share the similar catalytic and electron transfer modes in different lineages, while the electron-carrying proteins shuttled between membrane and soluble enzymes are very different. A comparatively simple electronic shuttle protein system was encoded in the early-branching groundwater lineages Candidatus (Ca.) Avalokitesvara and Ca. Tripitaka, which was replaced by a sophisticated electron carrier scheme in the late-branching marine and terrestrial groups within family Ca. Brocadiaceae. Remarkably, the increasing availability of nitrite after Great Oxidation Event (GOE) potentially drove the adaptive evolution of the core redox systems by successively recruiting the nitrite reductase (NIR) for nitrite balance, a stable complex of two small cytochrome c proteins (NaxL and NaxS homologues) for electron transfer to HZS, as well as optimizing the structure of nitrite oxidoreductase gamma (NxrC) for electron conservation. In particular, a tubule-inducing nitrite oxidoreductase subunit (NxrT homologue) was further formed for electron transformation after the Neoproterozoic Oxygenation Event (NOE). Finally, based on two full-scale anammox-based wastewater treatment systems (WWTPs), we identified core gene transcriptional activities affecting the abundance of the family Ca. Brocadiaceae and their association with environmental factors. Overall, our study not only provides key information for understanding the dynamic patterns and evolutionary mechanisms of the anammox reactions and the associated electron transfers in conjunction with major geological events, but also provides new insights for future enrichment and effective applications.
Collapse
Affiliation(s)
- Pengfei Hu
- Environmental Science and Engineering Research Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, the Netherlands
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China.
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China.
| |
Collapse
|
2
|
Guberman-Pfeffer MJ, Herron CL. Cytochrome "nanowires" are physically limited to sub-picoamp currents that suffice for cellular respiration. Front Chem 2025; 13:1549441. [PMID: 40144223 PMCID: PMC11936953 DOI: 10.3389/fchem.2025.1549441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
Mineral-respiring microorganisms from hydrothermal vents to terrestrial soils express filaments that electrically connect intracellular respiration to extracellular geochemistry. Filaments dubbed "cytochrome nanowires" (CNs) have been resolved by CryoEM, but whether they are the two-decades-long sought-after physiological "nanowires" remains unproven. To assess their functional competence, we analyzed biological redox conduction in all CNs by computing driving forces in the presence of redox anti-cooperativities, reorganization energies with electronic polarizability, and Marcus rates for diffusive and protein-limited flux models. The chain of heme cofactors in any CN must be densely packed to realize weak (≤0.01 eV) electronic coupling for electron transfer, as evidenced by a single Soret band produced from coincidental absorptions on multiple hemes. Dense packing, in turn, has three consequences: (1) limited driving forces (≤|0.3| eV) due to shared electrostatic microenvironments, (2) strong (≤0.12 eV) redox anti-cooperativities that would accentuate the free energy landscape if the linear heme arrangement did not dictate a contra-thermodynamic oxidation order, and (3) an entropic penalty that is offset by thioether 'tethers' of the hemes to the protein backbone. These linkages physically necessitate the rate-throttling T-stacked motif (10-fold slower than the other highly conserved slip-stacked motif). If the sequence of slip- and T-stacked hemes in the CNs had the fastest known nanosecond rates at every step, a micron-long filament would carry a diffusive 0.02 pA current at a physiological 0.1 V, or a protein-limited current of 0.2 pA. Actual CNs have sub-optimal (≤102-fold lower), but sufficient conductivities for cellular respiration, with at most thousands of filaments needed for total cellular metabolic flux. Reported conductivities once used to argue for metallic-like pili against the cytochrome hypothesis and now attributed to CNs remain inconsistent by 102-105-fold with the physical constraints on biological redox conduction through multiheme architectures.
Collapse
|
3
|
Akutsu Y, Fujiwara T, Suzuki R, Nishigaya Y, Yamazaki T. Juglone, a plant-derived 1,4-naphthoquinone, binds to hydroxylamine oxidoreductase and inhibits the electron transfer to cytochrome c554. Appl Environ Microbiol 2023; 89:e0129123. [PMID: 38009977 PMCID: PMC10734522 DOI: 10.1128/aem.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Nitrification, the microbial conversion of ammonia to nitrate via nitrite, plays a pivotal role in the global nitrogen cycle. However, the excessive use of ammonium-based fertilizers in agriculture has disrupted this cycle, leading to groundwater pollution and greenhouse gas emissions. In this study, we have demonstrated the inhibitory effects of plant-derived juglone and related 1,4-naphthoquinones on the nitrification process in Nitrosomonas europaea. Notably, the inhibition mechanism is elucidated in which 1,4-naphthoquinones interact with hydroxylamine oxidoreductase, disrupting the electron transfer to cytochrome c554, a physiological electron acceptor. These findings support the notion that phytochemicals can impede nitrification by interfering with the essential electron transfer process in ammonia oxidation. The findings presented in this article offer valuable insights for the development of strategies aimed at the management of nitrification, reduction of fertilizer utilization, and mitigation of greenhouse gas emissions.
Collapse
Affiliation(s)
- Yukie Akutsu
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takaaki Fujiwara
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Rintaro Suzuki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | | | - Toshimasa Yamazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Millimeter-scale vertical partitioning of nitrogen cycling in hypersaline mats reveals prominence of genes encoding multi-heme and prismane proteins. THE ISME JOURNAL 2022; 16:1119-1129. [PMID: 34862473 PMCID: PMC8940962 DOI: 10.1038/s41396-021-01161-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/01/2022]
Abstract
Microbial mats are modern analogues of the first ecosystems on the Earth. As extant representatives of microbial communities where free oxygen may have first been available on a changing planet, they offer an ecosystem within which to study the evolution of biogeochemical cycles requiring and inhibited by oxygen. Here, we report the distribution of genes involved in nitrogen metabolism across a vertical oxygen gradient at 1 mm resolution in a microbial mat using quantitative PCR (qPCR), retro-transcribed qPCR (RT-qPCR) and metagenome sequencing. Vertical patterns in the presence and expression of nitrogen cycling genes, corresponding to oxygen requiring and non-oxygen requiring nitrogen metabolism, could be seen across gradients of dissolved oxygen and ammonium. Metagenome analysis revealed that genes annotated as hydroxylamine dehydrogenase (proper enzyme designation EC 1.7.2.6, hao) and hydroxylamine reductase (hcp) were the most abundant nitrogen metabolism genes in the mat. The recovered hao genes encode hydroxylamine dehydrogenase EC 1.7.2.6 (HAO) proteins lacking the tyrosine residue present in aerobic ammonia oxidizing bacteria (AOB). Phylogenetic analysis confirmed that those proteins were more closely related to ɛHao protein present in Campylobacterota lineages (previously known as Epsilonproteobacteria) rather than oxidative HAO of AOB. The presence of hao sequences related with ɛHao protein, as well as numerous hcp genes encoding a prismane protein, suggest the presence of a nitrogen cycling pathway previously described in Nautilia profundicola as ancestral to the most commonly studied present day nitrogen cycling pathways.
Collapse
|
5
|
Zhou B, Chen G, Dong C, Jiang Y, Chen H, Ouyang T, Li YY, Zhang Y. The short-term and long-term effects of Fe(II) on the performance of anammox granules. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1651-1659. [PMID: 33657245 DOI: 10.1002/wer.1549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Fe(II) is one of the commonly used additives in wastewater treatment and proved to be beneficial for promoting microbial activity. In this study, the effects of Fe(II) on the specific anammox activity (SAA) and reactor performance were proved to be concentration-dependent. In the short-term experiment, low concentration of Fe(II) (5-80 mg/L) significantly enhanced the SAA, while high concentration of Fe(II) (120-300 mg/L) inhibited the SAA. It was confirmed that anammox can be domesticated after long-term exposure to low Fe(II) concentration, and the SAA could be further enhanced by higher Fe(II) concentration in the following phases. In addition, as an important factor for anammox granulation and maintaining the SAA, the extracellular polymeric substance (EPS) was also affected by Fe(II) addition. In spite of the effects on SAA and EPS, Fe(II) was proved to be the key factor that enhances the N2 O emission via abiotic pathway in the anammox reactor. PRACTITIONER POINTS: Low Fe(II) concentrations enhanced SAA, while high concentrations inhibited SAA. Long-term acclimatization by Fe(II) improved the tolerance of anammox to Fe(II). Fe(II) affects the amount and constituent of EPS and the performance of anammox granules. Accumulation of Fe(II) in the AAFEB reactor promoted the N2 O emission.
Collapse
Affiliation(s)
- Biru Zhou
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Guangjiao Chen
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Chifei Dong
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Yushi Jiang
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Haoyu Chen
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Tong Ouyang
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yanlong Zhang
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Akram M, Bock J, Dietl A, Barends TR. Specificity of Small c-Type Cytochromes in Anaerobic Ammonium Oxidation. ACS OMEGA 2021; 6:21457-21464. [PMID: 34471748 PMCID: PMC8388095 DOI: 10.1021/acsomega.1c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a bacterial process in which ammonium and nitrite are combined into dinitrogen gas and water, yielding energy for the cell. This process relies on a series of redox reactions catalyzed by a set of enzymes, with electrons being shuttled to and from these enzymes, likely by small cytochrome c proteins. For this system to work productively, these electron carriers require a degree of specificity toward the various possible redox partners they encounter in the cell. Here, we compare two cytochrome c proteins from the anammox model organism Kuenenia stuttgartiensis. We show that they are highly homologous, are expressed at comparable levels, share the same fold, and display highly similar redox potentials, yet one of them accepts electrons from the metabolic enzyme hydroxylamine oxidase (HAO) efficiently, whereas the other does not. An analysis of the crystal structures supplemented by Monte Carlo simulations of the transient redox interactions suggests that this difference is at least partly due to the electrostatic field surrounding the proteins, illustrating one way in which the electron carriers in anammox could attain the required specificity. Moreover, the simulations suggest a different "outlet" for electrons on HAO than has traditionally been assumed.
Collapse
|
7
|
Akram M, Dietl A, Müller M, Barends TRM. Purification of the key enzyme complexes of the anammox pathway from DEMON sludge. Biopolymers 2021; 112:e23428. [PMID: 33798263 DOI: 10.1002/bip.23428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Anaerobic Ammonium Oxidation ("anammox") is a bacterial process in which nitrite and ammonium are converted into nitrogen gas and water, yielding energy for the cell. Anammox is an important branch of the global biological nitrogen cycle, being responsible for up to 50% of the yearly nitrogen removal from the oceans. Strikingly, the anammox process uniquely relies on the extremely reactive and toxic compound hydrazine as a free intermediate. Given its global importance and biochemical novelty, there is considerable interest in the enzymes at the heart of the anammox pathway. Unfortunately, obtaining these enzymes in sufficiently large amounts for biochemical and structural studies is problematic, given the slow growth of pure cultures of anammox bacteria when high cell densities are required. However, the anammox process is being applied in wastewater treatment to remove nitrogenous waste in processes like DEamMONification (DEMON). In plants using such processes, which rely on a combination of aerobic ammonia-oxidizers and anammox organisms, kilogram amounts of anammox bacteria-containing sludge are readily available. Here, we report a protein isolation protocol starting from anammox cells present in DEMON sludge from a wastewater treatment plan that readily yields pure preparations of key anammox proteins in the tens of milligrams, including hydrazine synthase HZS and hydrazine dehydrogenase (HDH), as well as hydroxylamine oxidoreductase (HAO). HDH and HAO were active and of sufficient quality for biochemical studies and for HAO, the crystal structure could be determined. The method presented here provides a viable way to obtain materials for the study of proteins not only from the central anammox metabolism but also for the study of other exciting aspects of anammox bacteria, such as for example, their unusual ladderane lipids.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andreas Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Melanie Müller
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
8
|
Ferousi C, Schmitz RA, Maalcke WJ, Lindhoud S, Versantvoort W, Jetten MSM, Reimann J, Kartal B. Characterization of a nitrite-reducing octaheme hydroxylamine oxidoreductase that lacks the tyrosine cross-link. J Biol Chem 2021; 296:100476. [PMID: 33652023 PMCID: PMC8042395 DOI: 10.1016/j.jbc.2021.100476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The hydroxylamine oxidoreductase (HAO) family consists of octaheme proteins that harbor seven bis-His ligated electron-transferring hemes and one 5-coordinate catalytic heme with His axial ligation. Oxidative HAOs have a homotrimeric configuration with the monomers covalently attached to each other via a unique double cross-link between a Tyr residue and the catalytic heme moiety of an adjacent subunit. This cross-linked active site heme, termed the P460 cofactor, has been hypothesized to modulate enzyme reactivity toward oxidative catalysis. Conversely, the absence of this cross-link is predicted to favor reductive catalysis. However, this prediction has not been directly tested. In this study, an HAO homolog that lacks the heme-Tyr cross-link (HAOr) was purified to homogeneity from the nitrite-dependent anaerobic ammonium-oxidizing (anammox) bacterium Kuenenia stuttgartiensis, and its catalytic and spectroscopic properties were assessed. We show that HAOr reduced nitrite to nitric oxide and also reduced nitric oxide and hydroxylamine as nonphysiological substrates. In contrast, HAOr was not able to oxidize hydroxylamine or hydrazine supporting the notion that cross-link-deficient HAO enzymes are reductases. Compared with oxidative HAOs, we found that HAOr harbors an active site heme with a higher (at least 80 mV) midpoint potential and a much lower degree of porphyrin ruffling. Based on the physiology of anammox bacteria and our results, we propose that HAOr reduces nitrite to nitric oxide in vivo, providing anammox bacteria with NO, which they use to activate ammonium in the absence of oxygen.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Rob A Schmitz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Wouter J Maalcke
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Simon Lindhoud
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
9
|
Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nat Microbiol 2021; 6:1129-1139. [PMID: 34267357 PMCID: PMC8387239 DOI: 10.1038/s41564-021-00934-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Nitrate is an abundant nutrient and electron acceptor throughout Earth's biosphere. Virtually all nitrate in nature is produced by the oxidation of nitrite by the nitrite oxidoreductase (NXR) multiprotein complex. NXR is a crucial enzyme in the global biological nitrogen cycle, and is found in nitrite-oxidizing bacteria (including comammox organisms), which generate the bulk of the nitrate in the environment, and in anaerobic ammonium-oxidizing (anammox) bacteria which produce half of the dinitrogen gas in our atmosphere. However, despite its central role in biology and decades of intense study, no structural information on NXR is available. Here, we present a structural and biochemical analysis of the NXR from the anammox bacterium Kuenenia stuttgartiensis, integrating X-ray crystallography, cryo-electron tomography, helical reconstruction cryo-electron microscopy, interaction and reconstitution studies and enzyme kinetics. We find that NXR catalyses both nitrite oxidation and nitrate reduction, and show that in the cell, NXR is arranged in tubules several hundred nanometres long. We reveal the tubule architecture and show that tubule formation is induced by a previously unidentified, haem-containing subunit, NXR-T. The results also reveal unexpected features in the active site of the enzyme, an unusual cofactor coordination in the protein's electron transport chain, and elucidate the electron transfer pathways within the complex.
Collapse
|