1
|
Chen L, Fukata Y, Murata K. In situ cryo-electron tomography: a new method to elucidate cytoplasmic zoning at the molecular level. J Biochem 2024; 175:187-193. [PMID: 38102736 DOI: 10.1093/jb/mvad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Cryo-electron microscopy was developed as a powerful tool for imaging biological specimens in near-native conditions. Nowadays, advances in technology, equipment and computations make it possible to obtain structures of biomolecules with near-atomic resolution. Furthermore, cryo-electron tomography combined with continuous specimen tilting allows structural analysis of heterogeneous biological specimens. In particular, when combined with a cryo-focused ion beam scanning electron microscope, it becomes possible to directly analyse the structure of the biomolecules within cells, a process known as in situ cryo-electron tomography. This technique has the potential to visualize cytoplasmic zoning, involving liquid-liquid phase separation, caused by biomolecular networks in aqueous solutions, which has been the subject of recent debate. Here, we review advances in structural studies of biomolecules to study cytoplasmic zoning by in situ cryo-electron tomography.
Collapse
Affiliation(s)
- Lin Chen
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- School of life sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yuko Fukata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
2
|
Tang VT, Abbineni PS, Veiga Leprevost FD, Basrur V, Khoriaty R, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1- and SURF4-Dependent Secretory Cargoes. J Proteome Res 2023; 22:3439-3446. [PMID: 37844105 PMCID: PMC10629478 DOI: 10.1021/acs.jproteome.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 10/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif..
Collapse
Affiliation(s)
- Vi T. Tang
- Department
of Molecular and Integrative Physiology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Prabhodh S. Abbineni
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Microbiology and Immunology, Loyola University
Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | | - Venkatesha Basrur
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rami Khoriaty
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian T. Emmer
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I. Nesvizhskii
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David Ginsburg
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Tang VT, Abbineni PS, Leprevost FDV, Basrur V, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1 and SURF4 dependent secretory cargoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535922. [PMID: 37066360 PMCID: PMC10104123 DOI: 10.1101/2023.04.06.535922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles/tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | | | | | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Isotropic reconstruction for electron tomography with deep learning. Nat Commun 2022; 13:6482. [PMID: 36309499 PMCID: PMC9617606 DOI: 10.1038/s41467-022-33957-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cryogenic electron tomography (cryoET) allows visualization of cellular structures in situ. However, anisotropic resolution arising from the intrinsic "missing-wedge" problem has presented major challenges in visualization and interpretation of tomograms. Here, we have developed IsoNet, a deep learning-based software package that iteratively reconstructs the missing-wedge information and increases signal-to-noise ratio, using the knowledge learned from raw tomograms. Without the need for sub-tomogram averaging, IsoNet generates tomograms with significantly reduced resolution anisotropy. Applications of IsoNet to three representative types of cryoET data demonstrate greatly improved structural interpretability: resolving lattice defects in immature HIV particles, establishing architecture of the paraflagellar rod in Eukaryotic flagella, and identifying heptagon-containing clathrin cages inside a neuronal synapse of cultured cells. Therefore, by overcoming two fundamental limitations of cryoET, IsoNet enables functional interpretation of cellular tomograms without sub-tomogram averaging. Its application to high-resolution cellular tomograms should also help identify differently oriented complexes of the same kind for sub-tomogram averaging.
Collapse
|
5
|
Bisnett BJ, Condon BM, Linhart NA, Lamb CH, Huynh DT, Bai J, Smith TJ, Hu J, Georgiou GR, Boyce M. Evidence for nutrient-dependent regulation of the COPII coat by O-GlcNAcylation. Glycobiology 2021; 31:1102-1120. [PMID: 34142147 PMCID: PMC8457363 DOI: 10.1093/glycob/cwab055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic form of intracellular glycosylation common in animals, plants and other organisms. O-GlcNAcylation is essential in mammalian cells and is dysregulated in myriad human diseases, such as cancer, neurodegeneration and metabolic syndrome. Despite this pathophysiological significance, key aspects of O-GlcNAc signaling remain incompletely understood, including its impact on fundamental cell biological processes. Here, we investigate the role of O-GlcNAcylation in the coat protein II complex (COPII), a system universally conserved in eukaryotes that mediates anterograde vesicle trafficking from the endoplasmic reticulum. We identify new O-GlcNAcylation sites on Sec24C, Sec24D and Sec31A, core components of the COPII system, and provide evidence for potential nutrient-sensitive pathway regulation through site-specific glycosylation. Our work suggests a new connection between metabolism and trafficking through the conduit of COPII protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Noah A Linhart
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Caitlin H Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingyi Bai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - George R Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Basanta B, Chowdhury S, Lander GC, Grotjahn DA. A guided approach for subtomogram averaging of challenging macromolecular assemblies. J Struct Biol X 2020; 4:100041. [PMID: 33319208 PMCID: PMC7724198 DOI: 10.1016/j.yjsbx.2020.100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Benjamin Basanta
- Department of Integrative Structural and Computational Biology, Scripps Research, HZ 175, 10550 N Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, 144 Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research, HZ 175, 10550 N Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, Scripps Research, HZ 175, 10550 N Torrey Pines Rd., La Jolla, CA 92037, United States
| |
Collapse
|