1
|
Arora A, Gupta S, Devi C, Walia N. Customer experiences in the era of artificial intelligence (AI) in context to FinTech: a fuzzy AHP approach. BENCHMARKING-AN INTERNATIONAL JOURNAL 2023. [DOI: 10.1108/bij-10-2021-0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PurposeThe financial technology (FinTech) era has brought a revolutionary change in the financial sector’s customer experiences at the national and global levels. The importance of artificial intelligence (AI) in the context of FinTech services for enriching customer experiences has become a new norm in this modern era of technological advancement. So, it becomes crucial to understand the customer’s perspective. The current research ranks the factors and sub-factors influencing customers’ perceptions of AI-based FinTech services.Design/methodology/approachThe sample size for this study was decided to be 970 respondents from four Indian cities: Mumbai, Delhi, Kolkata and Chennai. The Fuzzy-AHP technique was used to identify the primary factors and sub-factors influencing customers’ experiences with AI-enabled finance services. The factors considered in the study were service quality, trust commitment, personalization, perceived convenience, relationship commitment, perceived sacrifice, subjective norms, perceived usefulness, attitude and vulnerability. The current research is both empirical and descriptive.FindingsThe study’s three top factors are service quality, perceived usefulness and perceived convenience, all of which have a significant impact on customers’ experience with AI-enabled FinTech services discussing sub-criteria three primary criteria for customers’ experience for FinTech services include: “Using FinTech would increase my effectiveness in managing a portfolio (A2)”, “My peer groups and friends have an impact on using FinTech services (SN3)” and “Using FinTech would increase my efficacy in administering portfolio (PU2)”.Research limitations/implicationsThe current study is limited to four Indian cities, with 10 factors to understand customers’ preferences in FinTech. Further research can focus on other dimensions like perceived ease of use, familiarity, etc. Future studies can have a broader view of different geographical locations and consider new tech to understand customer perceptions better.Practical implicationsThe study’s findings will significantly assist businesses in determining the primary aspects influencing customers’ experiences with AI-enabled financial services. As a result, they will develop strategies and policies to entice clients to use AI-powered FinTech services.Originality/valueExisting AI research investigated several vital topics in the context of FinTech services. On the other hand, the current study ranked the criteria in understanding customer experiences. The research will substantially assist marketers, business houses, academicians and practitioners in understanding essential facets influencing customer experience and contribute significantly to the literature.
Collapse
|
2
|
Okunlaya RO, Syed Abdullah N, Alias RA. Artificial intelligence (AI) library services innovative conceptual framework for the digital transformation of university education. LIBRARY HI TECH 2022. [DOI: 10.1108/lht-07-2021-0242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PurposeArtificial intelligence (AI) is one of the latest digital transformation (DT) technological trends the university library can use to provide library users with alternative educational services. AI can foster intelligent decisions for retrieving and sharing information for learning and research. However, extant literature confirms a low adoption rate by the university libraries in using AI to provide innovative alternative services, as this is missing in their strategic plan. The research develops (AI-LSICF) an artificial intelligence library services innovative conceptual framework to provide new insight into how AI technology can be used to deliver value-added innovative library services to achieve digital transformation. It will also encourage library and information professionals to adopt AI to complement effective service delivery.Design/methodology/approachThis study adopts a qualitative content analysis to investigate extant literature on how AI adoption fosters innovative services in various organisations. The study also used content analysis to generate possible solutions to aid AI service innovation and delivery in university libraries.FindingsThis study uses its findings to develop an Artificial Intelligence Library Services Innovative Conceptual Framework (AI-LSICF) by integrating AI applications and functions into the digital transformation framework elements and discussed using a service innovation framework.Research limitations/implicationsIn research, AI-LSICF helps increase an understanding of AI by presenting new insights into how the university library can leverage technology to actualise innovation in service provision to foster DT. This trail will be valuable to scholars and academics interested in addressing the application pathways of AI library service innovation, which is still under-explored in digital transformation.Practical implicationsIn practice, AI-LSICF could reform the information industry from its traditional brands into a more applied and resolutely customer-driven organisation. This reformation will awaken awareness of how librarians and information professionals can leverage technology to catch up with digital transformation in this age of the fourth industrial revolution.Social implicationsThe enlightenment of AI-LSICF will motivate library professionals to take advantage of AI's potential to enhance their current business model and achieve a unique competitive advantage within their community.Originality/valueAI-LSICF development serves as a revelation, motivating university libraries and information professionals to consider AI in their strategic plan to enable technology to support university education. This act will enable alternative service delivery in the face of unforeseen circumstances like technological disruption and the present global COVID-19 pandemic that requires non-physical interaction.
Collapse
|
3
|
Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. BENCHMARKING-AN INTERNATIONAL JOURNAL 2020. [DOI: 10.1108/bij-04-2020-0186] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PurposeHuman resource managers are adopting AI technology for conducting various tasks of human resource management, starting from manpower planning till employee exit. AI technology is prominently used for talent acquisition in organizations. This research investigates the adoption of AI technology for talent acquisition.Design/methodology/approachThis study employs Technology-Organization-Environment (TOE) and Task-Technology-Fit (TTF) framework and proposes a model to explore the adoption of AI technology for talent acquisition. The survey was conducted among the 562 human resource managers and talent acquisition managers with a structured questionnaire. The analysis of data was completed using PLS-SEM.FindingsThis research reveals that cost-effectiveness, relative advantage, top management support, HR readiness, competitive pressure and support from AI vendors positively affect AI technology adoption for talent acquisition. Security and privacy issues negatively influence the adoption of AI technology. It is found that task and technology characteristics influence the task technology fit of AI technology for talent acquisition. Adoption and task technology fit of AI technology influence the actual usage of AI technology for talent acquisition. It is revealed that stickiness to traditional talent acquisition methods negatively moderates the association between adoption and actual usage of AI technology for talent acquisition. The proposed model was empirically validated and revealed the predictors of adoption and actual usage of AI technology for talent acquisition.Practical implicationsThis paper provides the predictors of the adoption of AI technology for talent acquisition, which is emerging extensively in the human resource domain. It provides vital insights to the human resource managers to benchmark AI technology required for talent acquisition. Marketers can develop their marketing plan considering the factors of adoption. It would help designers to understand the factors of adoption and design the AI technology algorithms and applications for talent acquisition. It contributes to advance the literature of technology adoption by interweaving it with the human resource domain literature on talent acquisition.Originality/valueThis research uniquely validates the model for the adoption of AI technology for talent acquisition using the TOE and TTF framework. It reveals the factors influencing the adoption and actual usage of AI technology for talent acquisition.
Collapse
|
4
|
Dhamija P, Bag S. Role of artificial intelligence in operations environment: a review and bibliometric analysis. TQM JOURNAL 2020. [DOI: 10.1108/tqm-10-2019-0243] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose“Technological intelligence” is the capacity to appreciate and adapt technological advancements, and “artificial intelligence” is the key to achieve persuasive operational transformations in majority of contemporary organizational set-ups. Implicitly, artificial intelligence (the philosophies of machines to think, behave and perform either same or similar to humans) has knocked the doors of business organizations as an imperative activity. Artificial intelligence, as a discipline, initiated by scientist John McCarthy and formally publicized at Dartmouth Conference in 1956, now occupies a central stage for many organizations. Implementation of artificial intelligence provides competitive edge to an organization with a definite augmentation in its social and corporate status. Mere application of a concept will not furnish real output until and unless its performance is reviewed systematically. Technological changes are dynamic and advancing at a rapid rate. Subsequently, it becomes highly crucial to understand that where have the people reached with respect to artificial intelligence research. The present article aims to review significant work by eminent researchers towards artificial intelligence in the form of top contributing universities, authors, keywords, funding sources, journals and citation statistics.Design/methodology/approachAs rightly remarked by past researchers that reviewing is learning from experience, research team has reviewed (by applying systematic literature review through bibliometric analysis) the concept of artificial intelligence in this article. A sum of 1,854 articles extracted from Scopus database for the year 2018–2019 (31st of May) with selected keywords (artificial intelligence, genetic algorithms, agent-based systems, expert systems, big data analytics and operations management) along with certain filters (subject–business, management and accounting; language-English; document–article, article in press, review articles and source-journals).FindingsResults obtained from cluster analysis focus on predominant themes for present as well as future researchers in the area of artificial intelligence. Emerged clusters include Cluster 1: Artificial Intelligence and Optimization; Cluster 2: Industrial Engineering/Research and Automation; Cluster 3: Operational Performance and Machine Learning; Cluster 4: Sustainable Supply Chains and Sustainable Development; Cluster 5: Technology Adoption and Green Supply Chain Management and Cluster 6: Internet of Things and Reverse Logistics.Originality/valueThe result of review of selected studies is in itself a unique contribution and a food for thought for operations managers and policy makers.
Collapse
|