Abbasi Moud A. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents.
Int J Biol Macromol 2022;
222:1-29. [PMID:
36156339 DOI:
10.1016/j.ijbiomac.2022.09.148]
[Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022]
Abstract
The most common and abundant polymer in nature is the linear polysaccharide cellulose, but processing it requires a new approach since cellulose degrades before melting and does not dissolve in ordinary organic solvents. Cellulose aerogels are exceptionally porous (>90 %), have a high specific surface area, and have low bulk density (0.0085 mg/cm3), making them suitable for a variety of sophisticated applications including but not limited to adsorbents. The production of materials with different qualities from the nanocellulose based aerogels is possible thanks to the ease with which other chemicals may be included into the structure of nanocellulose based aerogels; despite processing challenges, cellulose can nevertheless be formed into useful, value-added products using a variety of traditional and cutting-edge techniques. To improve the adsorption of these aerogels, rheology, 3-D printing, surface modification, employment of metal organic frameworks, freezing temperature, and freeze casting techniques were all investigated and included. In addition to exploring venues for creation of aerogels, their integration with CNC liquid crystal formation were also explored and examined to pursue "smart adsorbent aerogels". The objective of this endeavour is to provide a concise and in-depth evaluation of recent findings about the conception and understanding of nanocellulose aerogel employing a variety of technologies and examination of intricacies involved in enhancing adsorption properties of these aerogels.
Collapse