Samara MN, Harry KD. Leveraging Kaizen with Process Mining in Healthcare Settings: A Conceptual Framework for Data-Driven Continuous Improvement.
Healthcare (Basel) 2025;
13:941. [PMID:
40281890 PMCID:
PMC12026918 DOI:
10.3390/healthcare13080941]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Healthcare systems face persistent challenges in improving efficiency, optimizing resources, and delivering high-quality care. Traditional continuous improvement methodologies often rely on subjective assessments, while data-driven approaches typically lack human-centered adaptability. This study aims to develop an integrated framework combining Kaizen principles with Process Mining capabilities to address these limitations in healthcare process optimization. Methods: This research employed a structured literature review approach to identify key concepts, methodologies, and applications of both Kaizen and Process Mining in healthcare settings. The study synthesized insights from the peer-reviewed literature published in the last two decades to develop a conceptual framework integrating these approaches for healthcare process improvement. Results: The proposed framework combines Kaizen's employee-driven approach to eliminating inefficiencies with Process Mining's ability to analyze workflow data and identify process deviations. The integration is structured into four key phases: data collection, process analysis, Kaizen events, and continuous monitoring. This structure creates a feedback loop where data-driven insights inform collaborative problem-solving, resulting in sustained improvements validated through objective process analysis. Conclusions: The integration of Kaizen and Process Mining offers a promising approach to enhancing workflow efficiency, reducing operational errors, and improving resource utilization in healthcare settings. While challenges such as data quality concerns, resource constraints, and potential resistance to change must be addressed, the framework provides a foundation for more effective process optimization. Future research should focus on empirical validation, AI-enhanced analytics, and assessing adaptability across diverse healthcare contexts.
Collapse