1
|
Kyaw HH, Myint MTZ, Al-Belushi MA, Dobretsov S, Al-Abri M. Nanomaterial grafted polymorphous activated carbon cloth surface for antibacterial, capacitive deionization and oil spill cleaning applications. CHEMOSPHERE 2024; 350:141053. [PMID: 38154669 DOI: 10.1016/j.chemosphere.2023.141053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
This work reports the development of multifunctional or polymorphous surfaces using zinc oxide (ZnO) nanorods, silica (SiO2), and fluoropolymer functionalization in a sequential process. Firstly, zinc oxide nanorods were grown on activated carbon cloth (ACC) using a simple low-temperature synthesis process. ZnO nanorods-coated ACC substrate was applied to investigate the antimicrobial properties, and the results showed inhibition of 50% for Escherichia coli (E.coli) and 55% for Bacillus subtilis (B.subtilis) over 48 h of incubation time. Subsequent in-situ modification of silica nanoparticles like layer on ZnO nanorods-coated ACC surface was developed and used as an electrode for brackish water desalination in a capacitive deionization system. ZnO-SiO2 modified ACC surface enhanced the desalination efficiency by 1.6 times, the salt removal rate (SRR) by threefold, and the durability (fouling prevention) for long-term usage compared to pristine ACC. Further modification of the ZnO-SiO2-ACC surface using fluoropolymer rendered the surface superhydrophobic and oleophilic. Vegetable (1.4 g/g) and crude oil (1.6 g/g) adsorption capacities were achieved for modified surface which was 70% enhancement compared with pristine ACC. The dynamic oil spill adsorption test exhibited the complete removal of oil spills on water surfaces within a few seconds, suggesting a potential application in oil spill cleaning.
Collapse
Affiliation(s)
- Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, PO Box 33, Al-Khoudh, 123, Muscat, Oman
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al-Khoudh, 123, Muscat, Oman.
| | - Mohammed A Al-Belushi
- Department of Marine Science and Fisheries, College of Agriculture and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khoudh, 123, Muscat, Oman; Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agriculture, Fisheries Wealth & Water Resources, PO Box 3094, Airport Central Post,111, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agriculture and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khoudh, 123, Muscat, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, PO Box 33, Al-Khoudh, 123, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, PO Box 33, Al-Khoudh, 123, Muscat, Oman.
| |
Collapse
|
2
|
Barani M, Fathizadeh H, Arkaban H, Kalantar-Neyestanaki D, Akbarizadeh MR, Turki Jalil A, Akhavan-Sigari R. Recent Advances in Nanotechnology for the Management of Klebsiella pneumoniae-Related Infections. BIOSENSORS 2022; 12:1155. [PMID: 36551122 PMCID: PMC9776335 DOI: 10.3390/bios12121155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Klebsiella pneumoniae is an important human pathogen that causes diseases such as urinary tract infections, pneumonia, bloodstream infections, bacteremia, and sepsis. The rise of multidrug-resistant strains has severely limited the available treatments for K. pneumoniae infections. On the other hand, K. pneumoniae activity (and related infections) urgently requires improved management strategies. A growing number of medical applications are using nanotechnology, which uses materials with atomic or molecular dimensions, to diagnose, eliminate, or reduce the activity of different infections. In this review, we start with the traditional treatment and detection method for K. pneumoniae and then concentrate on selected studies (2015-2022) that investigated the application of nanoparticles separately and in combination with other techniques against K. pneumoniae.
Collapse
Affiliation(s)
- Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan 7616916338, Iran
| | - Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, 72076 Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, 00014 Warsaw, Poland
| |
Collapse
|