1
|
Taleb A, Guigou C, Leclerc S, Lalande A, Bozorg Grayeli A. Image-to-Patient Registration in Computer-Assisted Surgery of Head and Neck: State-of-the-Art, Perspectives, and Challenges. J Clin Med 2023; 12:5398. [PMID: 37629441 PMCID: PMC10455300 DOI: 10.3390/jcm12165398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Today, image-guided systems play a significant role in improving the outcome of diagnostic and therapeutic interventions. They provide crucial anatomical information during the procedure to decrease the size and the extent of the approach, to reduce intraoperative complications, and to increase accuracy, repeatability, and safety. Image-to-patient registration is the first step in image-guided procedures. It establishes a correspondence between the patient's preoperative imaging and the intraoperative data. When it comes to the head-and-neck region, the presence of many sensitive structures such as the central nervous system or the neurosensory organs requires a millimetric precision. This review allows evaluating the characteristics and the performances of different registration methods in the head-and-neck region used in the operation room from the perspectives of accuracy, invasiveness, and processing times. Our work led to the conclusion that invasive marker-based methods are still considered as the gold standard of image-to-patient registration. The surface-based methods are recommended for faster procedures and applied on the surface tissues especially around the eyes. In the near future, computer vision technology is expected to enhance these systems by reducing human errors and cognitive load in the operating room.
Collapse
Affiliation(s)
- Ali Taleb
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
| | - Caroline Guigou
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Otolaryngology Department, University Hospital of Dijon, 21000 Dijon, France
| | - Sarah Leclerc
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
| | - Alain Lalande
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Medical Imaging Department, University Hospital of Dijon, 21000 Dijon, France
| | - Alexis Bozorg Grayeli
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Otolaryngology Department, University Hospital of Dijon, 21000 Dijon, France
| |
Collapse
|
2
|
Reattachable fiducial skin marker for automatic multimodality registration. Int J Comput Assist Radiol Surg 2022; 17:2141-2150. [PMID: 35604488 PMCID: PMC9515062 DOI: 10.1007/s11548-022-02639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
Abstract
Abstract
Purpose
Fusing image information has become increasingly important for optimal diagnosis and treatment of the patient. Despite intensive research towards markerless registration approaches, fiducial marker-based methods remain the default choice for a wide range of applications in clinical practice. However, as especially non-invasive markers cannot be positioned reproducibly in the same pose on the patient, pre-interventional imaging has to be performed immediately before the intervention for fiducial marker-based registrations.
Methods
We propose a new non-invasive, reattachable fiducial skin marker concept for multi-modal registration approaches including the use of electromagnetic or optical tracking technologies. We furthermore describe a robust, automatic fiducial marker localization algorithm for computed tomography (CT) and magnetic resonance imaging (MRI) images. Localization of the new fiducial marker has been assessed for different marker configurations using both CT and MRI. Furthermore, we applied the marker in an abdominal phantom study. For this, we attached the marker at three poses to the phantom, registered ten segmented targets of the phantom’s CT image to live ultrasound images and determined the target registration error (TRE) for each target and each marker pose.
Results
Reattachment of the marker was possible with a mean precision of 0.02 mm ± 0.01 mm. Our algorithm successfully localized the marker automatically in all ($$n=201$$
n
=
201
) evaluated CT/MRI images. Depending on the marker pose, the mean ($$n=10$$
n
=
10
) TRE of the abdominal phantom study ranged from 1.51 ± 0.75 mm to 4.65 ± 1.22 mm.
Conclusions
The non-invasive, reattachable skin marker concept allows reproducible positioning of the marker and automatic localization in different imaging modalities. The low TREs indicate the potential applicability of the marker concept for clinical interventions, such as the puncture of abdominal lesions, where current image-based registration approaches still lack robustness and existing marker-based methods are often impractical.
Collapse
|
3
|
Fiedler C, Jacobs PP, Müller M, Kolbig S, Grunert R, Meixensberger J, Winkler D. A Comparative Study of Automatic Localization Algorithms for Spherical Markers within 3D MRI Data. Brain Sci 2021; 11:brainsci11070876. [PMID: 34208999 PMCID: PMC8301951 DOI: 10.3390/brainsci11070876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Localization of features and structures in images is an important task in medical image-processing. Characteristic structures and features are used in diagnostics and surgery planning for spatial adjustments of the volumetric data, including image registration or localization of bone-anchors and fiducials. Since this task is highly recurrent, a fast, reliable and automated approach without human interaction and parameter adjustment is of high interest. In this paper we propose and compare four image processing pipelines, including algorithms for automatic detection and localization of spherical features within 3D MRI data. We developed a convolution based method as well as algorithms based on connected-components labeling and analysis and the circular Hough-transform. A blob detection related approach, analyzing the Hessian determinant, was examined. Furthermore, we introduce a novel spherical MRI-marker design. In combination with the proposed algorithms and pipelines, this allows the detection and spatial localization, including the direction, of fiducials and bone-anchors.
Collapse
Affiliation(s)
- Christian Fiedler
- Department of Neurosurgery, University of Leipzig, 04103 Leipzig, SN, Germany; (C.F.); (R.G.); (J.M.); (D.W.)
- Department of Physical Engineering/Computer Sciences, University of Applied Sciences, 08056 Zwickau, SN, Germany;
| | - Paul-Philipp Jacobs
- Department of Neurosurgery, University of Leipzig, 04103 Leipzig, SN, Germany; (C.F.); (R.G.); (J.M.); (D.W.)
- Correspondence:
| | - Marcel Müller
- Fraunhofer Institute for Machine Tools and Forming Technology, 01187 Dresden, SN, Germany;
| | - Silke Kolbig
- Department of Physical Engineering/Computer Sciences, University of Applied Sciences, 08056 Zwickau, SN, Germany;
| | - Ronny Grunert
- Department of Neurosurgery, University of Leipzig, 04103 Leipzig, SN, Germany; (C.F.); (R.G.); (J.M.); (D.W.)
- Fraunhofer Institute for Machine Tools and Forming Technology, 01187 Dresden, SN, Germany;
| | - Jürgen Meixensberger
- Department of Neurosurgery, University of Leipzig, 04103 Leipzig, SN, Germany; (C.F.); (R.G.); (J.M.); (D.W.)
| | - Dirk Winkler
- Department of Neurosurgery, University of Leipzig, 04103 Leipzig, SN, Germany; (C.F.); (R.G.); (J.M.); (D.W.)
| |
Collapse
|
4
|
Regodić M, Bardosi Z, Freysinger W. Automated fiducial marker detection and localization in volumetric computed tomography images: a three-step hybrid approach with deep learning. J Med Imaging (Bellingham) 2021; 8:025002. [PMID: 33937439 PMCID: PMC8080060 DOI: 10.1117/1.jmi.8.2.025002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose: Automating fiducial detection and localization in the patient’s pre-operative images can lead to better registration accuracy, reduced human errors, and shorter intervention time. Most current approaches are optimized for a single marker type, mainly spherical adhesive markers. A fully automated algorithm is proposed and evaluated for screw and spherical titanium fiducials, typically used in high-accurate frameless surgical navigation. Approach: The algorithm builds on previous approaches with morphological functions and pose estimation algorithms. A 3D convolutional neural network (CNN) is proposed for the fiducial classification task and evaluated for both traditional closed-set and emerging open-set classifiers. A proposed digital ground-truth experiment, with cone-beam computed tomography (CBCT) imaging software, is performed to determine the localization accuracy of the algorithm. The localized fiducial positions in the CBCT images by the presented algorithm were compared to the actual known positions in the virtual phantom models. The difference represents the fiducial localization error (FLE). Results: A total of 241 screws, 151 spherical fiducials, and 1550 other structures are identified with the best true positive rate 95.9% for screw and 99.3% for spherical fiducials at 8.7% and 3.4% false positive rate, respectively. The best achieved FLE mean and its standard deviation for a screw and spherical marker are 58 (14) and 14 (6) μm, respectively. Conclusions: Accurate marker detection and localization were achieved, with spherical fiducials being superior to screws. Large marker volume and smaller voxel size yield significantly smaller FLEs. Attenuating noise by mesh smoothing has a minor effect on FLE. Future work will focus on expanding the CNN for image segmentation.
Collapse
Affiliation(s)
- Milovan Regodić
- Medical University of Innsbruck, Department of Otorhinolaryngology, Innsbruck, Austria.,Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - Zoltan Bardosi
- Medical University of Innsbruck, Department of Otorhinolaryngology, Innsbruck, Austria
| | - Wolfgang Freysinger
- Medical University of Innsbruck, Department of Otorhinolaryngology, Innsbruck, Austria
| |
Collapse
|
5
|
Abstract
PURPOSE Modern stereotaxy utilizes preoperative computed tomography (CT) and magnetic resonance imaging (MRI) to provide accurate localization information which can be very helpful in orbital surgery. The purpose of this report is to evaluate the usefulness of stereotactic surgery and application of this procedure in the orbit. METHODS Interventional case series of three patients with orbital tumors. All patients had tumor resection with the utilization of two frameless stereotactic systems: Cygnus and Stealth Station. RESULTS The applications of image-guided stereotactic surgery proved to be beneficial in three extensive orbital tumors, including optic nerve glioma, recurrent pleomorphic adenoma of lacrimal gland, and secondary orbital meningioma. CONCLUSIONS The interactive nature of image guidance can be useful in orbital surgery to orient the surgeon to the exact location within the surgical field and to determine the tumor margins.
Collapse
Affiliation(s)
- Z A Karcioglu
- Department of Ophthalmology, Tulane University Health Sciences Center, New Orleans, LA70112, USA.
| | | |
Collapse
|
6
|
Yu H, Pistol C, Franklin R, Barborica A. Clinical Accuracy of Customized Stereotactic Fixtures for Stereoelectroencephalography. World Neurosurg 2018; 109:82-88. [DOI: 10.1016/j.wneu.2017.09.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022]
|
7
|
Chu Y, Yang J, Ma S, Ai D, Li W, Song H, Li L, Chen D, Chen L, Wang Y. Registration and fusion quantification of augmented reality based nasal endoscopic surgery. Med Image Anal 2017; 42:241-256. [PMID: 28881251 DOI: 10.1016/j.media.2017.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/10/2017] [Accepted: 08/02/2017] [Indexed: 11/24/2022]
Abstract
This paper quantifies the registration and fusion display errors of augmented reality-based nasal endoscopic surgery (ARNES). We comparatively investigated the spatial calibration process for front-end endoscopy and redefined the accuracy level of a calibrated endoscope by using a calibration tool with improved structural reliability. We also studied how registration accuracy was combined with the number and distribution of the deployed fiducial points (FPs) for positioning and the measured registration time. A physically integrated ARNES prototype was customarily configured for performance evaluation in skull base tumor resection surgery with an innovative approach of dynamic endoscopic vision expansion. As advised by surgical experts in otolaryngology, we proposed a hierarchical rendering scheme to properly adapt the fused images with the required visual sensation. By constraining the rendered sight in a known depth and radius, the visual focus of the surgeon can be induced only on the anticipated critical anatomies and vessel structures to avoid misguidance. Furthermore, error analysis was conducted to examine the feasibility of hybrid optical tracking based on point cloud, which was proposed in our previous work as an in-surgery registration solution. Measured results indicated that the error of target registration for ARNES can be reduced to 0.77 ± 0.07 mm. For initial registration, our results suggest that a trade-off for a new minimal time of registration can be reached when the distribution of five FPs is considered. For in-surgery registration, our findings reveal that the intrinsic registration error is a major cause of performance loss. Rigid model and cadaver experiments confirmed that the scenic integration and display fluency of ARNES are smooth, as demonstrated by three clinical trials that surpassed practicality.
Collapse
Affiliation(s)
- Yakui Chu
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| | - Shaodong Ma
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Danni Ai
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjie Li
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Song
- School of Software, Beijing Institute of Technology, Beijing 100081, China
| | - Liang Li
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Lei Chen
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Dillon NP, Balachandran R, Siebold MA, Webster RJ, Wanna GB, Labadie RF. Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal. Otol Neurotol 2017; 38:441-447. [PMID: 28079677 PMCID: PMC5303146 DOI: 10.1097/mao.0000000000001324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS An image-guided robotic system can safely perform the bulk removal of bone during the translabyrinthine approach to vestibular schwannoma (VS). BACKGROUND The translabyrinthine approach to VS removal involves extensive manual milling in the temporal bone to gain access to the internal auditory canal (IAC) for tumor resection. This bone removal is time consuming and challenging due to the presence of vital anatomy (e.g., facial nerve) embedded within the temporal bone. A robotic system can use preoperative imaging and segmentations to guide a surgical drill to remove a prescribed volume of bone, thereby preserving the surgeon for the more delicate work of opening the IAC and resecting the tumor. METHODS Fresh human cadaver heads were used in the experiments. For each trial, the desired bone resection volume was planned on a preoperative computed tomography (CT) image, the steps in the proposed clinical workflow were undertaken, and the robot was programmed to mill the specified volume. A postoperative CT scan was acquired for evaluation of the accuracy of the milled cavity and examination of vital anatomy. RESULTS In all experimental trials, the facial nerve and chorda tympani were preserved. The root mean squared surface accuracy of the milled cavities ranged from 0.23 to 0.65 mm and the milling time ranged from 32.7 to 57.0 minute. CONCLUSION This work shows feasibility of using a robot-assisted approach for VS removal surgery. Further testing and system improvements are necessary to enable clinical translation of this technology.
Collapse
Affiliation(s)
- Neal P Dillon
- *Mechanical Engineering †Otolaryngology, Vanderbilt University Medical Center ‡Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
9
|
Lin Q, Yang R, Cai K, Guan P, Xiao W, Wu X. Strategy for accurate liver intervention by an optical tracking system. BIOMEDICAL OPTICS EXPRESS 2015; 6:3287-3302. [PMID: 26417501 PMCID: PMC4574657 DOI: 10.1364/boe.6.003287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
Image-guided navigation for radiofrequency ablation of liver tumors requires the accurate guidance of needle insertion into a tumor target. The main challenge of image-guided navigation for radiofrequency ablation of liver tumors is the occurrence of liver deformations caused by respiratory motion. This study reports a strategy of real-time automatic registration to track custom fiducial markers glued onto the surface of a patient's abdomen to find the respiratory phase, in which the static preoperative CT is performed. Custom fiducial markers are designed. Real-time automatic registration method consists of the automatic localization of custom fiducial markers in the patient and image spaces. The fiducial registration error is calculated in real time and indicates if the current respiratory phase corresponds to the phase of the static preoperative CT. To demonstrate the feasibility of the proposed strategy, a liver simulator is constructed and two volunteers are involved in the preliminary experiments. An ex-vivo porcine liver model is employed to further verify the strategy for liver intervention. Experimental results demonstrate that real-time automatic registration method is rapid, accurate, and feasible for capturing the respiratory phase from which the static preoperative CT anatomical model is generated by tracking the movement of the skin-adhered custom fiducial markers.
Collapse
Affiliation(s)
- Qinyong Lin
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Rongqian Yang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Ken Cai
- School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Peifeng Guan
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Weihu Xiao
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoming Wu
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Staudacher A, Oevermann A, Stoffel MH, Gorgas D. Validation of a magnetic resonance imaging guided stereotactic access to the ovine brainstem. BMC Vet Res 2014; 10:216. [PMID: 25241810 PMCID: PMC4177427 DOI: 10.1186/s12917-014-0216-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background Anatomical differences between humans and domestic mammals preclude the use of reported stereotactic approaches to the brainstem in animals. In animals, brainstem biopsies are required both for histopathological diagnosis of neurological disorders and for research purposes. Sheep are used as a translational model for various types of brain disease and therefore a species-specific approach needs to be developed. The aim of the present study was to establish a minimally invasive, accurate and reproducible stereotactic approach to the brainstem of sheep, using the magnetic resonance imaging guided BrainsightTM frameless stereotactic system. Results A transoccipital transcerebellar approach with an entry point in the occipital bone above the vermis between the transverse sinus and the external occipital protuberance was chosen. This approach provided access to the target site in all heads. The overall mean needle placement error was 1.85 ± 1.22 mm. Conclusions The developed transoccipital transcerebellar route is short, provides accurate access to the ovine caudal cranial fossa and is a promising approach to be further assessed in live animals.
Collapse
Affiliation(s)
| | | | | | - Daniela Gorgas
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse-Faculty, University of Berne, Längassstrasse 128, Berne, CH 3012, Switzerland.
| |
Collapse
|
11
|
Balachandran R, Reda FA, Noble JH, Blachon GS, Dawant BM, Fitzpatrick JM, Labadie RF. Minimally invasive image-guided cochlear implantation for pediatric patients: clinical feasibility study. Otolaryngol Head Neck Surg 2014; 150:631-7. [PMID: 24449796 DOI: 10.1177/0194599813519050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Minimally invasive image-guided cochlear implantation (CI) involves accessing the cochlea via a linear path from the lateral skull to the cochlea avoiding vital structures including the facial nerve. Herein, we describe and demonstrate the feasibility of the technique for pediatric patients. STUDY DESIGN Prospective. SETTING Children's Hospital. SUBJECTS AND METHODS Thirteen pediatric patients (1.5 to 8 years) undergoing traditional CI participated in this Institutional Review Board-approved study. Three fiducial markers were bone-implanted surrounding the ear, and a CT scan was acquired. The CT scan was processed to identify the marker locations and critical structures of the temporal bone. A safe linear path was determined to target the cochlea avoiding damage to vital structures. A custom microstereotactic frame was fabricated that would mount on the fiducial markers and constrain a tool to the desired trajectory. After traditional mastoidectomy and prior to cochleostomy, the custom microstereotactic frame was mounted on the bone-implanted markers to confirm that the achieved trajectory was safe and accurately accessed the cochlea. RESULTS For all the 13 patients, it was possible to determine a safe trajectory to the cochlea. Custom microstereotactic frames were validated successfully on 9 patients. Two of these patients had inner ear malformations, and this technique helped the surgeon confirm ideal location for cochleostomy. For patients with normal anatomy, the mean and standard deviation of the closest distance of the trajectory to facial nerve and chorda tympani were 1.1 ± 0.3 mm and 1.2 ± 0.5 mm, respectively. CONCLUSION Minimally invasive image-guided CI is feasible for pediatric patients.
Collapse
Affiliation(s)
- Ramya Balachandran
- Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S. Surgical planning tool for robotically assisted hearing aid implantation. Int J Comput Assist Radiol Surg 2013; 9:11-20. [DOI: 10.1007/s11548-013-0908-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
|
13
|
Gerber N, Gavaghan KA, Bell BJ, Williamson TM, Weisstanner C, Caversaccio MD, Weber S. High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head. IEEE Trans Biomed Eng 2013; 60:960-8. [PMID: 23340586 DOI: 10.1109/tbme.2013.2241063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Image-guided microsurgery requires accuracies an order of magnitude higher than today's navigation systems provide. A critical step toward the achievement of such low-error requirements is a highly accurate and verified patient-to-image registration. With the aim of reducing target registration error to a level that would facilitate the use of image-guided robotic microsurgery on the rigid anatomy of the head, we have developed a semiautomatic fiducial detection technique. Automatic force-controlled localization of fiducials on the patient is achieved through the implementation of a robotic-controlled tactile search within the head of a standard surgical screw. Precise detection of the corresponding fiducials in the image data is realized using an automated model-based matching algorithm on high-resolution, isometric cone beam CT images. Verification of the registration technique on phantoms demonstrated that through the elimination of user variability, clinically relevant target registration errors of approximately 0.1 mm could be achieved.
Collapse
Affiliation(s)
- Nicolas Gerber
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3012 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Dhou S, Motai Y, Hugo GD. Local intensity feature tracking and motion modeling for respiratory signal extraction in cone beam CT projections. IEEE Trans Biomed Eng 2012. [PMID: 23193225 DOI: 10.1109/tbme.2012.2226883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accounting for respiration motion during imaging can help improve targeting precision in radiation therapy. We propose local intensity feature tracking (LIFT), a novel markerless breath phase sorting method in cone beam computed tomography (CBCT) scan images. The contributions of this study are twofold. First, LIFT extracts the respiratory signal from the CBCT projections of the thorax depending only on tissue feature points that exhibit respiration. Second, the extracted respiratory signal is shown to correlate with standard respiration signals. LIFT extracts feature points in the first CBCT projection of a sequence and tracks those points in consecutive projections forming trajectories. Clustering is applied to select trajectories showing an oscillating behavior similar to the breath motion. Those "breathing" trajectories are used in a 3-D reconstruction approach to recover the 3-D motion of the lung which represents the respiratory signal. Experiments were conducted on datasets exhibiting regular and irregular breathing patterns. Results showed that LIFT-based respiratory signal correlates with the diaphragm position-based signal with an average phase shift of 1.68 projections as well as with the internal marker-based signal with an average phase shift of 1.78 projections. LIFT was able to detect the respiratory signal in all projections of all datasets.
Collapse
Affiliation(s)
- Salam Dhou
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | |
Collapse
|
15
|
Seslija P, Teeter MG, Yuan X, Naudie DDR, Bourne RB, MacDonald SJ, Peters TM, Holdsworth DW. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system. Med Phys 2012; 39:6090-103. [DOI: 10.1118/1.4752205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Reda FA, Noble JH, Labadie RF, Dawant BM. Automatic pre- to intra-operative CT registration for image-guided cochlear implant surgery. IEEE Trans Biomed Eng 2012; 59:3070-7. [PMID: 22922692 DOI: 10.1109/tbme.2012.2214775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Percutaneous cochlear implantation (PCI) is a minimally-invasive image-guided cochlear implant approach, where access to the cochlea is achieved by drilling a linear channel from the skull surface to the cochlea. The PCI approach requires pre- and intra-operative planning. Computation of a safe linear drilling trajectory is performed in a preoperative CT. This trajectory is mapped to intraoperative space using the transformation matrix that registers the pre- and intra-operative CTs. However, the difference in orientation between the pre- and intra-operative CTs is too extreme to be recovered by standard, gradient descent-based registration methods. Thus far, the registration has been initialized manually by an expert. In this paper, we present a method that aligns the scans completely automatically. We compared the performance of the automatic approach to the registration approach when an expert does the manual initialization on 11 pairs of scans. There is a maximum difference of 0.18 mm between the entry and target points of the trajectory mapped with expert initialization and the automatic registration method. This suggests that the automatic registration method is accurate enough to be used in a PCI surgery.
Collapse
Affiliation(s)
- Fitsum A Reda
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
17
|
Fattori G, Riboldi M, Desplanques M, Tagaste B, Pella A, Orecchia R, Baroni G. Automated Fiducial Localization in CT Images Based on Surface Processing and Geometrical Prior Knowledge for Radiotherapy Applications. IEEE Trans Biomed Eng 2012; 59:2191-9. [DOI: 10.1109/tbme.2012.2198822] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Tong X, Garofalakis A, Dubois A, Boisgard R, Ducongé F, Trébossen R, Tavitian B. Co-registration of glucose metabolism with positron emission tomography and vascularity with fluorescent diffuse optical tomography in mouse tumors. EJNMMI Res 2012; 2:19. [PMID: 22564761 PMCID: PMC3506556 DOI: 10.1186/2191-219x-2-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/24/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Bimodal molecular imaging with fluorescence diffuse optical tomography (fDOT) and positron emission tomography (PET) has the capacity to provide multiple molecular information of mouse tumors. The objective of the present study is to co-register fDOT and PET molecular images of tumors in mice automatically. METHODS The coordinates of bimodal fiducial markers (FM) in regions of detection were automatically detected in planar optical images (x, y positions) in laser pattern optical surface images (z position) and in 3-D PET images. A transformation matrix was calculated from the coordinates of the FM in fDOT and in PET and applied in order to co-register images of mice bearing neuroendocrine tumors. RESULTS The method yielded accurate non-supervised co-registration of fDOT and PET images. The mean fiducial registration error was smaller than the respective voxel sizes for both modalities, allowing comparison of the distribution of contrast agents from both modalities in mice. Combined imaging depicting tumor metabolism with PET-[18 F]2-deoxy-2-fluoro-d-glucose and blood pool with fDOT demonstrated partial overlap of the two signals. CONCLUSIONS This automatic method for co-registration of fDOT with PET and other modalities is efficient, simple and rapid, opening up multiplexing capacities for experimental in vivo molecular imaging.
Collapse
Affiliation(s)
- Xiao Tong
- CEA, Institut d'Imagerie Biomédicale (I2BM), Service Hospitalier Frédéric Joliot (SHFJ), Laboratoire d'Imagerie Moléculaire Expérimentale, 4 place du Général Leclerc, 91401, Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lang P, Seslija P, Chu MWA, Bainbridge D, Guiraudon GM, Jones DL, Peters TM. US–Fluoroscopy Registration for Transcatheter Aortic Valve Implantation. IEEE Trans Biomed Eng 2012; 59:1444-53. [DOI: 10.1109/tbme.2012.2189392] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Kang SH, Kim MK, Kim JH, Park HK, Park W. Marker-free registration for the accurate integration of CT images and the subject's anatomy during navigation surgery of the maxillary sinus. Dentomaxillofac Radiol 2012; 41:679-85. [PMID: 22499127 DOI: 10.1259/dmfr/21358271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This study compared three marker-free registration methods that are applicable to a navigation system that can be used for maxillary sinus surgery, and evaluated the associated errors, with the aim of determining which registration method is the most applicable for operations that require accurate navigation. METHODS The CT digital imaging and communications in medicine (DICOM) data of ten maxillary models in DICOM files were converted into stereolithography file format. All of the ten maxillofacial models were scanned three dimensionally using a light-based three-dimensional scanner. The methods applied for registration of the maxillofacial models utilized the tooth cusp, bony landmarks and maxillary sinus anterior wall area. The errors during registration were compared between the groups. RESULTS There were differences between the three registration methods in the zygoma, sinus posterior wall, molar alveolar, premolar alveolar, lateral nasal aperture and the infraorbital areas. The error was smallest using the overlay method for the anterior wall of the maxillary sinus, and the difference was statistically significant. CONCLUSION The navigation error can be minimized by conducting registration using the anterior wall of the maxillary sinus during image-guided surgery of the maxillary sinus.
Collapse
Affiliation(s)
- S-H Kang
- Department of Oral and Maxillofacial Surgery, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do, Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Reda FA, Noble JH, Rivas A, McRackan TR, Labadie RF, Dawant BM. Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans. Med Phys 2011; 38:5590-600. [PMID: 21992377 DOI: 10.1118/1.3634048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Cochlear implant surgery is used to implant an electrode array in the cochlea to treat hearing loss. The authors recently introduced a minimally invasive image-guided technique termed percutaneous cochlear implantation. This approach achieves access to the cochlea by drilling a single linear channel from the outer skull into the cochlea via the facial recess, a region bounded by the facial nerve and chorda tympani. To exploit existing methods for computing automatically safe drilling trajectories, the facial nerve and chorda tympani need to be segmented. The goal of this work is to automatically segment the facial nerve and chorda tympani in pediatric CT scans. METHODS The authors have proposed an automatic technique to achieve the segmentation task in adult patients that relies on statistical models of the structures. These models contain intensity and shape information along the central axes of both structures. In this work, the authors attempted to use the same method to segment the structures in pediatric scans. However, the authors learned that substantial differences exist between the anatomy of children and that of adults, which led to poor segmentation results when an adult model is used to segment a pediatric volume. Therefore, the authors built a new model for pediatric cases and used it to segment pediatric scans. Once this new model was built, the authors employed the same segmentation method used for adults with algorithm parameters that were optimized for pediatric anatomy. RESULTS A validation experiment was conducted on 10 CT scans in which manually segmented structures were compared to automatically segmented structures. The mean, standard deviation, median, and maximum segmentation errors were 0.23, 0.17, 0.18, and 1.27 mm, respectively. CONCLUSIONS The results indicate that accurate segmentation of the facial nerve and chorda tympani in pediatric scans is achievable, thus suggesting that safe drilling trajectories can also be computed automatically.
Collapse
Affiliation(s)
- Fitsum A Reda
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
22
|
Dubowitz DJ, Scadeng M. A frameless stereotaxic MRI technique for macaque neuroscience studies. Open Neuroimag J 2011; 5:198-205. [PMID: 22253662 PMCID: PMC3257065 DOI: 10.2174/1874440001105010198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/06/2011] [Accepted: 01/14/2011] [Indexed: 12/03/2022] Open
Abstract
MRI has achieved widespread use for preplanning neuroscience procedures for non-human primate studies. However, orienting imaging studies in stereotaxic space has relied primarily on using a stereotaxic frame or co-registering fiducial markers with the neuroimaging. In this study, we present a simple approach in which the MRI dataset is aligned to the bony landmarks that define the Frankfurt stereotaxic baseline plane, without the need for a stereotaxic frame or additional external fiducials. To facilitate localizing the bony landmarks (infraorbital margin, external bony auditory meatus) on the MRI scans additional imaging landmarks (mid ocular plane, temporomandibular joint) are discussed that provide supplementary and readily visible points of reference. The frameless MRI stereotaxic technique was evaluated in 8 rhesus macaque monkeys using 3D fast gradient echo MRI images with 0.7mm isotropic resolution. 1) Difference in stereotaxic coordinates of fiducial markers was compared between a traditional stereotaxic frame and the frameless MRI technique (n=2). 2) Differences in stereotaxic coordinates for cerebral regions were compared between the frameless MRI technique and MRI obtained with the animal positioned in a MRI-compatible stereotaxic frame (n=4). 3) The frameless MRI technique was further refined to prescribe electrode penetrations within a dural recording chamber in stereotaxic coordinates relative to the electrode microdrive. Differences in MRI coordinates were compared with the electrode microdrive (n=3). Mean localization of fiducial markers differed by 1.6 +/- 0.6 mm between the frameless MRI technique and a traditional stereotaxic frame. Between the frameless technique and an MRI-compatible stereotaxic frame, localization of cerebral anatomy differed by 2.8 +/- 2.2 mm with the primary source of error being a pitch-up rotation in the sagittal plane. This localization difference was reduced to 0.5 +/- 0.6 mm when this rotation was removed. Frameless MRI coordinates for electrode tracts within the dural recording chamber were within 0.5mm +/- 0.2 mm of the electrode microdrive readings. This simple technique provides the ability to accurately plan surgery and neurophysiological recordings in an individual animal, and to define the location of cerebral anatomy and electrode or injection tracts using publically available software, and without the need for dedicated MRI-compatible localization hardware. The reduced need for deep anesthesia (a necessity with traditional stereotaxic frames) makes the technique more amenable for functional MRI studies. Since each animal provides the bony landmarks to define their own stereotaxic space, this technique is readily applicable to other species.
Collapse
Affiliation(s)
- David J Dubowitz
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA 92093-0677, USA
| | | |
Collapse
|
23
|
Frati A, Pichierri A, Bastianello S, Raco A, Santoro A, Esposito V, Giangaspero F, Salvati M. Frameless stereotactic cerebral biopsy: our experience in 296 cases. Stereotact Funct Neurosurg 2011; 89:234-45. [PMID: 21778794 DOI: 10.1159/000325704] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/12/2011] [Indexed: 11/19/2022]
Abstract
AIMS To evaluate the reliability, safety and accuracy of a the frameless stereotactic system in our clinical series and the differences between head fixation by means of a standard Mayfield head holder and the pinless FESS frame, and to evaluate the usefulness of biopsy targeting on the basis of magnetic resonance spectroscopy (MRS) data. METHODS The spectroscopic analysis was used to facilitate the targeting of the lesion. The fusion image function embedded in the Neuronavigation Unit was used postoperatively to assess the level of accuracy of the biopsy. The grading of the glioma specimens was correlated to the spectroscopic data. RESULTS 296 patients underwent cerebral biopsy in 8 years. The diagnostic yield was 99.7%. The spectroscopic choline/N-acetyl aspartate ratio in different areas of the same tumor correlated well with the histological grading of the lesion. CONCLUSION The frameless stereotactic systems guarantee excellent biopsy results. Advanced imaging, in particular MRS, facilitates the correct targeting of nonenhancing lesions.
Collapse
|
24
|
Balachandran R, Schurzig D, Fitzpatrick JM, Labadie RF. Evaluation of portable CT scanners for otologic image-guided surgery. Int J Comput Assist Radiol Surg 2011; 7:315-21. [PMID: 21779768 DOI: 10.1007/s11548-011-0639-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/23/2011] [Indexed: 11/30/2022]
Abstract
PURPOSE Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. METHODS Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom(®)) and a fixed-base, flat-panel, volume CT (fpVCT) scanner (Xoran xCAT(®)). Images were analyzed for: (a) subjective quality (i.e., noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. RESULTS Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements, while the geometric representation of the fiducial markers was highly accurate. CONCLUSION Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use.
Collapse
Affiliation(s)
- Ramya Balachandran
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, 10450 Medical Center East, South Tower, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
25
|
Beltrachini L, von Ellenrieder N, Muravchik CH. General bounds for electrode mislocation on the EEG inverse problem. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 103:1-9. [PMID: 20599288 DOI: 10.1016/j.cmpb.2010.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 04/30/2010] [Accepted: 05/18/2010] [Indexed: 05/29/2023]
Abstract
We analyze the effect of electrode mislocation on the electroencephalography (EEG) inverse problem using the Cramér-Rao bound (CRB) for single dipolar source parameters. We adopt a realistic head shape model, and solve the forward problem using the Boundary Element Method; the use of the CRB allows us to obtain general results which do not depend on the algorithm used for solving the inverse problem. We consider two possible causes for the electrode mislocation, errors in the measurement of the electrode positions and an imperfect registration between the electrodes and the scalp surfaces. For 120 electrodes placed in the scalp according to the 10-20 standard, and errors on the electrode location with a standard deviation of 5mm, the lower bound on the standard deviation in the source depth estimation is approximately 1mm in the worst case. Therefore, we conclude that errors in the electrode location may be tolerated since their effect on the EEG inverse problem are negligible from a practical point of view.
Collapse
Affiliation(s)
- L Beltrachini
- LEICI, Facultad de Ingeniería, Universidad Nacional de La Plata, Calle 1 y 47, B1900TAG La Plata, Buenos Aires, Argentina.
| | | | | |
Collapse
|
26
|
Pawiro SA, Markelj P, Pernus F, Gendrin C, Figl M, Weber C, Kainberger F, Nöbauer-Huhmann I, Bergmeister H, Stock M, Georg D, Bergmann H, Birkfellner W. Validation for 2D/3D registration. I: A new gold standard data set. Med Phys 2011; 38:1481-90. [PMID: 21520860 DOI: 10.1118/1.3553402] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In this article, the authors propose a new gold standard data set for the validation of two-dimensional/three-dimensional (2D/3D) and 3D/3D image registration algorithms. METHODS A gold standard data set was produced using a fresh cadaver pig head with attached fiducial markers. The authors used several imaging modalities common in diagnostic imaging or radiotherapy, which include 64-slice computed tomography (CT), magnetic resonance imaging using T1, T2, and proton density sequences, and cone beam CT imaging data. Radiographic data were acquired using kilovoltage and megavoltage imaging techniques. The image information reflects both anatomy and reliable fiducial marker information and improves over existing data sets by the level of anatomical detail, image data quality, and soft-tissue content. The markers on the 3D and 2D image data were segmented using ANALYZE 10.0 (AnalyzeDirect, Inc., Kansas City, KN) and an in-house software. RESULTS The projection distance errors and the expected target registration errors over all the image data sets were found to be less than 2.71 and 1.88 mm, respectively. CONCLUSIONS The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D and 3D/3D registration algorithms for image guided therapy.
Collapse
Affiliation(s)
- S A Pawiro
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Surgical navigation for meningioma surgery. J Neurooncol 2010; 99:357-64. [DOI: 10.1007/s11060-010-0359-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
28
|
Waspe AC, McErlain DD, Pitelka V, Holdsworth DW, Lacefield JC, Fenster A. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions. Med Phys 2010; 37:1647-59. [PMID: 20443486 DOI: 10.1118/1.3312520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. METHODS An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. RESULTS Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. CONCLUSIONS The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.
Collapse
Affiliation(s)
- Adam C Waspe
- Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5K8, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Hebb AO, Miller KJ. Semi-automatic stereotactic coordinate identification algorithm for routine localization of Deep Brain Stimulation electrodes. J Neurosci Methods 2010; 187:114-9. [DOI: 10.1016/j.jneumeth.2009.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 12/08/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|
30
|
Labadie RF, Shah RJ, Harris SS, Cetinkaya E, Haynes DS, Fenlon MR, Juscyzk AS, Galloway RL, Fitzpatrick JM. Submillimetric target-registration error using a novel, non-invasive fiducial system for image-guided otologic surgery. ACTA ACUST UNITED AC 2010; 9:145-53. [PMID: 16192054 DOI: 10.3109/10929080500066922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Otologic surgery is undertaken to treat ailments of the ear, including persistent infections, hearing loss, vertigo, and cancer. Typically performed on otherwise-healthy patients in outpatient facilities, the application of image-guided surgery (IGS) has been limited because accurate (<1 mm), non-invasive fiducial systems for otologic surgery have not been available. We now present such a fiducial system. METHODS A dental bite-block was fitted with a custom-designed rigid frame with 7 fiducial markers surrounding each external ear. The bones containing the ear (i.e., the temporal bones) of 3 cadaveric skulls were removed and replaced with discs containing 13 surgical targets arranged in a cross-hair pattern about the centroid of each ear. The surgical targets (26/skull) and fiducial markers (14/skull) were identified both within CT scans using a published algorithm and in physical space using an infrared optical tracking system. Fiducial registration error (FRE), fiducial localization error (FLE), and target registration error (TRE) were calculated. RESULTS For all trials, root mean square FRE = 0.66, FLE = 0.72, and TRE = 0.77 mm. The mean TRE for n = 234 independent targets was 0.73 with a standard deviation of 0.25 mm. CONCLUSIONS Using a novel, non-invasive fiducial system (the EarMark), submillimetric accuracy was repeatably achieved. This system will facilitate image-guided otologic surgery.
Collapse
Affiliation(s)
- Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-2559, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Muratore DM, Russ JH, Dawant BM, Galloway RL. Three-Dimensional Image Registration of Phantom Vertebrae for Image-Guided Surgery: A Preliminary Study. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/10929080209146523] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
|
33
|
Unlu M, Krol A, Magri A, Mandel J, Lee W, Baum K, Lipson E, Coman I, Feiglin D. Computerized method for nonrigid MR-to-PET breast-image registration. Comput Biol Med 2010; 40:37-53. [DOI: 10.1016/j.compbiomed.2009.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 10/07/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
34
|
Widmann G, Stoffner R, Sieb M, Bale R. Target registration and target positioning errors in computer-assisted neurosurgery: proposal for a standardized reporting of error assessment. Int J Med Robot 2009; 5:355-65. [DOI: 10.1002/rcs.271] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Bootsma GJ, Siewerdsen JH, Daly MJ, Jaffray DA. Initial investigation of an automatic registration algorithm for surgical navigation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:3638-42. [PMID: 19163499 DOI: 10.1109/iembs.2008.4649996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The procedure required for registering a surgical navigation system prior to use in a surgical procedure is conventionally a time-consuming manual process that is prone to human errors and must be repeated as necessary through the course of a procedure. The conventional procedure becomes even more time consuming when intra-operative 3D imaging such as the C-arm cone-beam CT (CBCT) is introduced, as each updated volume set requires a new registration. To improve the speed and accuracy of registering image and world reference frames in image-guided surgery, a novel automatic registration algorithm was developed and investigated. The surgical navigation system consists of either Polaris (Northern Digital Inc., Waterloo, ON) or MicronTracker (Claron Technology Inc., Toronto, ON) tracking camera(s), custom software (Cogito running on a PC), and a prototype CBCT imaging system based on a mobile isocentric C-arm (Siemens, Erlangen, Germany). Experiments were conducted to test the accuracy of automatic registration methods for both the MicronTracker and Polaris tracking cameras. Results indicate the automated registration performs as well as the manual registration procedure using either the Claron or Polaris camera. The average root-mean-squared (rms) observed target registration error (TRE) for the manual procedure was 2.58 +/- 0.42 mm and 1.76 +/- 0.49 mm for the Polaris and MicronTracker, respectively. The mean observed TRE for the automatic algorithm was 2.11 +/- 0.13 and 2.03 +/- 0.3 mm for the Polaris and MicronTracker, respectively. Implementation and optimization of the automatic registration technique in Carm CBCT guidance of surgical procedures is underway.
Collapse
Affiliation(s)
- Gregory J Bootsma
- Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
36
|
Widmann G, Stoffner R, Bale R. Errors and error management in image-guided craniomaxillofacial surgery. ACTA ACUST UNITED AC 2009; 107:701-15. [DOI: 10.1016/j.tripleo.2009.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 12/15/2022]
|
37
|
Bogie K, Wang X, Fei B, Sun J. New technique for real-time interface pressure analysis: getting more out of large image data sets. ACTA ACUST UNITED AC 2009; 45:523-35, 10 p following 535. [PMID: 18712638 DOI: 10.1682/jrrd.2007.03.0046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent technological improvements have led to increasing clinical use of interface pressure mapping for seating pressure evaluation, which often requires repeated assessments. However, clinical conditions cannot be controlled as closely as research settings, thereby creating challenges to statistical analysis of data. A multistage longitudinal analysis and self-registration (LASR) technique is introduced that emphasizes real-time interface pressure image analysis in three dimensions. Suitable for use in clinical settings, LASR is composed of several modern statistical components, including a segmentation method. The robustness of our segmentation method is also shown. Application of LASR to analysis of data from neuromuscular electrical stimulation (NMES) experiments confirms that NMES improves static seating pressure distributions in the sacral-ischial region over time. Dynamic NMES also improves weight-shifting over time. These changes may reduce the risk of pressure ulcer development.
Collapse
Affiliation(s)
- Kath Bogie
- Cleveland Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
38
|
Automatic localization of the center of fiducial markers in 3D CT/MRI images for image-guided neurosurgery. Pattern Recognit Lett 2009. [DOI: 10.1016/j.patrec.2008.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Xiaojun C, Ming Y, Yanping L, Yiqun W, Chengtao W. Image guided oral implantology and its application in the placement of zygoma implants. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2009; 93:162-173. [PMID: 18951648 DOI: 10.1016/j.cmpb.2008.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 07/23/2008] [Accepted: 09/04/2008] [Indexed: 05/27/2023]
Abstract
The application of zygoma implants proposes a successful treatment for functional reconstruction of maxillary defects. However, the placement of zygoma implants is not without risk due to anatomically complex operation sites. Aiming at minimizing the risks and improving the precision of the surgery, an image guided oral implantology system (IGOIS) is presented in this study to transfer the preoperative plan accurately to the operating theatre. The principle of IGOIS is introduced in detail, including the framework, 3D-reconstruction, preoperative planning, registration, and the motion tracking algorithm. The phantom experiment shows that fiducial registration error (FRE) and TRE (target registration error) of IGOIS are, respectively, 1.12mm and 1.35mm. With respect to the overall accuracy, the average distance deviations at the coronal and apical point of the implant are, respectively, 1.36+/-0.59mm and 1.57+/-0.59mm, while average angle deviation between the axes of the planned and the actual implant is 4.1 degrees +/-0.9 degrees . A clinical report for a patient with a severely atrophic maxilla demonstrates that the major advantage of this computer-aided navigation technology lies in its accuracy, reliability, and flexibility.
Collapse
Affiliation(s)
- Chen Xiaojun
- Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | | | |
Collapse
|
40
|
Traub J, Sielhorst T, Heining SM, Navab N. Advanced Display and Visualization Concepts for Image Guided Surgery. ACTA ACUST UNITED AC 2008. [DOI: 10.1109/jdt.2008.2006510] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Zhang M, Huang M, Le C, Zanzonico PB, Claus F, Kolbert KS, Martin K, Ling CC, Koutcher JA, Humm JL. Accuracy and reproducibility of tumor positioning during prolonged and multi-modality animal imaging studies. Phys Med Biol 2008; 53:5867-82. [PMID: 18827321 DOI: 10.1088/0031-9155/53/20/021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dedicated small-animal imaging devices, e.g. positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI) scanners, are being increasingly used for translational molecular imaging studies. The objective of this work was to determine the positional accuracy and precision with which tumors in situ can be reliably and reproducibly imaged on dedicated small-animal imaging equipment. We designed, fabricated and tested a custom rodent cradle with a stereotactic template to facilitate registration among image sets. To quantify tumor motion during our small-animal imaging protocols, 'gold standard' multi-modality point markers were inserted into tumor masses on the hind limbs of rats. Three types of imaging examination were then performed with the animals continuously anesthetized and immobilized: (i) consecutive microPET and MR images of tumor xenografts in which the animals remained in the same scanner for 2 h duration, (ii) multi-modality imaging studies in which the animals were transported between distant imaging devices and (iii) serial microPET scans in which the animals were repositioned in the same scanner for subsequent images. Our results showed that the animal tumor moved by less than 0.2-0.3 mm over a continuous 2 h microPET or MR imaging session. The process of transporting the animal between instruments introduced additional errors of approximately 0.2 mm. In serial animal imaging studies, the positioning reproducibility within approximately 0.8 mm could be obtained.
Collapse
Affiliation(s)
- Mutian Zhang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen X, Lin Y, Wu Y, Wang C. Real-time motion tracking in image-guided oral implantology. Int J Med Robot 2008; 4:339-47. [DOI: 10.1002/rcs.215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Automatic localization and labeling of EEG sensors (ALLES) in MRI volume. Neuroimage 2008; 41:914-23. [DOI: 10.1016/j.neuroimage.2008.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 02/04/2008] [Accepted: 02/14/2008] [Indexed: 11/24/2022] Open
|
44
|
Feuerstein M, Mussack T, Heining SM, Navab N. Intraoperative laparoscope augmentation for port placement and resection planning in minimally invasive liver resection. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:355-369. [PMID: 18334431 DOI: 10.1109/tmi.2007.907327] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In recent years, an increasing number of liver tumor indications were treated by minimally invasive laparoscopic resection. Besides the restricted view, two major intraoperative issues in laparoscopic liver resection are the optimal planning of ports as well as the enhanced visualization of (hidden) vessels, which supply the tumorous liver segment and thus need to be divided (e.g., clipped) prior to the resection. We propose an intuitive and precise method to plan the placement of ports. Preoperatively, self-adhesive fiducials are affixed to the patient's skin and a computed tomography (CT) data set is acquired while contrasting the liver vessels. Immediately prior to the intervention, the laparoscope is moved around these fiducials, which are automatically reconstructed to register the patient to its preoperative imaging data set. This enables the simulation of a camera flight through the patient's interior along the laparoscope's or instruments' axes to easily validate potential ports. Intraoperatively, surgeons need to update their surgical planning based on actual patient data after organ deformations mainly caused by application of carbon dioxide pneumoperitoneum. Therefore, preoperative imaging data can hardly be used. Instead, we propose to use an optically tracked mobile C-arm providing cone-beam CT imaging capability intraoperatively. After patient positioning, port placement, and carbon dioxide insufflation, the liver vessels are contrasted and a 3-D volume is reconstructed during patient exhalation. Without any further need for patient registration, the reconstructed volume can be directly augmented on the live laparoscope video, since prior calibration enables both the volume and the laparoscope to be positioned and oriented in the tracking coordinate frame. The augmentation provides the surgeon with advanced visual aid for the localization of veins, arteries, and bile ducts to be divided or sealed.
Collapse
Affiliation(s)
- Marco Feuerstein
- Department of Media Science, Graduate School of Information Science, Nagoya University, Nagoya 464-8603, Japan.
| | | | | | | |
Collapse
|
45
|
Helbig M, Krysztoforski K, Krowicki P, Helbig S, Gstoettner W, Kozak J. Development of prototype for navigated real-time sonography for the head and neck region. Head Neck 2008; 30:215-21. [PMID: 17764089 DOI: 10.1002/hed.20679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND To date, few imaging methods have been established for the head and neck region, in particular for soft tissues, that allow adequate visualization and simultaneously adequate real-time orientation. METHODS We report a new method using a navigated ultrasound device and a navigated surgical instrument that allows--even in the absence of bony landmarks--appropriate visualization and reliable orientation in real time. RESULTS The practical applicability of the system was tested. Good handling and acceptance of the system could be shown. The "3-dimensional error" derived from the deviations in all 3 dimensions lies at 0.64 mm. CONCLUSIONS With this ultrasound-guided navigated procedure, an accurate approach of soft tissue structures with a surgical instrument is possible. Changes of the situs are represented in real time.
Collapse
Affiliation(s)
- Matthias Helbig
- Department of Otolaryngology, Head and Neck Surgery, University of Frankfurt/Main, Theodor Stern Kai 7, 60590 Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Guo WY, Lee JJS, Lin MH, Yang CC, Chen CL, Huang YH, Tyan YS, Wu TH. Merging molecular and anatomical information: A feasibility study on rodents using microPET and MRI. Nucl Med Commun 2007; 28:804-12. [PMID: 17728611 DOI: 10.1097/mnm.0b013e3282d25a0d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The use of the micro positron emission tomography (microPET) technique provides a powerful means for molecular imaging on small animals, while its inferior spatial resolution offers insufficient anatomical information which impedes the interpretations of the scans. To improve this limitation, it often relies on a clinical magnetic resonance imaging (MRI) for providing anatomical details. In this study, we designed and developed a new image co-registration platform which contains a stereotactic frame and external fiducial markers for microPET and MRI studies. The image co-registration accuracies were also validated by this new platform using various imaging protocols for microPET and MRI. METHODS The microPET images were reconstructed by filtered back-projection (FBP) and ordered subset expectation maximization (OSEM) methods. Two MRI pulse sequences, two-dimensional T1-weighted fast spin-echo (FSE) and three-dimensional spoiled gradient recalled (SPGR), were employed in the studies. Two MRI scanning protocols were proposed for small animal imaging: the whole-body high-speed mode and the partial high-resolution mode. RESULTS Reconstructed images from two different modalities were integrated by point-to-point registration via the external fiducials. Four inter-modality matched co-registration pairs (FBP-FSE, FBP-SPGR, OSEM-FSE, OSEM-SPGR) were obtained for both the high speed and high resolution modes. Co-registration accuracy was given as the average fiducial registration error (FRE) between the centroids of six markers from the registered images. The overall systemic FREs were about 0.50 mm. CONCLUSIONS From the inter-modality FRE comparison, MRI imaging with FSE performed better than that with SPGR sequence, due to its higher signal-to-noise ratio and less magnetic susceptibility effects. In the microPET perspective, the OSEM was superior to the FBP, as a result of fewer image artifacts.
Collapse
Affiliation(s)
- Wan-Yuo Guo
- Department of Radiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Baños-Capilla MC, García MA, Bea J, Pla C, Larrea L, López E. PET/CT image registration: Preliminary tests for its application to clinical dosimetry in radiotherapy. Med Phys 2007; 34:1911-7. [PMID: 17654893 DOI: 10.1118/1.2732031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The quality of dosimetry in radiotherapy treatment requires the accurate delimitation of the gross tumor volume. This can be achieved by complementing the anatomical detail provided by CT images through fusion with other imaging modalities that provide additional metabolic and physiological information. Therefore, use of multiple imaging modalities for radiotherapy treatment planning requires an accurate image registration method. This work describes tests carried out on a Discovery LS positron emission/computed tomography (PET/CT) system by General Electric Medical Systems (GEMS), for its later use to obtain images to delimit the target in radiotherapy treatment. Several phantoms have been used to verify image correlation, in combination with fiducial markers, which were used as a system of external landmarks. We analyzed the geometrical accuracy of two different fusion methods with the images obtained with these phantoms. We first studied the fusion method used by the PET/CT system by GEMS (hardware fusion) on the basis that there is satisfactory coincidence between the reconstruction centers in CT and PET systems; and secondly the fiducial fusion, a registration method, by means of least-squares fitting algorithm of a landmark points system. The study concluded with the verification of the centroid position of some phantom components in both imaging modalities. Centroids were estimated through a calculation similar to center-of-mass, weighted by the value of the CT number and the uptake intensity in PET. The mean deviations found for the hardware fusion method were: deltax/ +/-sigma = 3.3 mm +/- 1.0 mm and /deltax/ +/-sigma = 3.6 mm +/- 1.0 mm. These values were substantially improved upon applying fiducial fusion based on external landmark points: /deltax/ +/-sigma = 0.7 mm +/- 0.8 mm and /deltax/ +/-sigma = 0.3 mm 1.7 mm. We also noted that differences found for each of the fusion methods were similar for both the axial and helical CT image acquisition protocols.
Collapse
Affiliation(s)
- M C Baños-Capilla
- Department of Medical Physics, Radiation Oncology Hospital Virgen del Consuelo, Callosa de Ensarria 12-Valencia, Valencia 46007, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Koessler L, Maillard L, Benhadid A, Vignal JP, Braun M, Vespignani H. Spatial localization of EEG electrodes. Neurophysiol Clin 2007; 37:97-102. [PMID: 17540292 DOI: 10.1016/j.neucli.2007.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AIM OF THE STUDY An important goal for EEG-based functional brain studies is to estimate the location of brain sources that produce the scalp-recorded signals. Such source localization requires locating precisely the position of the EEG sensors. This review describes and compares different methods that are used for localizing EEG sensors. RESULTS Five different methods have been described in literature. Manual methods consist in manual measurements to calculate the 3D coordinates of the sensors. Electromagnetic and ultrasound digitization permit localization by using trade devices. The photogrammetry system consists in taking pictures of the patient's head with the sensors. The last method consists in directly localizing the EEG sensors in the MRI volume. DISCUSSION AND CONCLUSIONS The spatial localization of EEG sensors is an important step in performing source localization. This method should be accurate, fast, reproducible, and cheap. Currently, electromagnetic digitization is the most currently used method but MRI localization could be an interesting way because no additional method or device needs to be used to locate the EEG sensors.
Collapse
Affiliation(s)
- L Koessler
- Inserm ERI13, University Henri Poincaré, 54000 Nancy, France
| | | | | | | | | | | |
Collapse
|
49
|
Hunsche S, Sauner D, Maarouf M, Lackner K, Sturm V, Treuer H. COMBINED X-RAY AND MAGNETIC RESONANCE IMAGING FACILITY. Oper Neurosurg (Hagerstown) 2007; 60:352-60; discussion 360-1. [PMID: 17415174 DOI: 10.1227/01.neu.0000255423.24173.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To assess the feasibility of a hybrid imaging setup combining x-ray and magnetic resonance imaging (MRI) in the setting of both stereotactic and functional neurosurgery. METHODS A combined x-ray and MRI scanning facility with a trolley system for a fast patient transfer between both modalities was installed in a neurosurgical setting. A registration algorithm for fusion of MRI scans and x-ray images was derived for augmentation of fluoroscopic x-ray projection images with MRI scan data, such as anatomic structures and planned probe trajectories. Phantom measurements were obtained between both modalities for estimation of registration accuracy. Practical application of our system in stereotactic and functional neurosurgery was tested in brachytherapy, deep brain stimulation, and motor cortex stimulation. RESULTS Phantom measurements yielded a mean spatial deviation of 0.7 +/- 0.3 mm with a maximum deviation of 1.1 mm for MRI scans versus x-rays. Augmentation of x-ray images with MRI scan data allowed intraoperative verification of the planned trajectory and target in three types of neurosurgical procedures: positioning iodine seeds in brachytherapy in one case with cerebellar metastasis, placement of electrodes for deep brain stimulation in two cases of advanced Parkinson's disease, and placement of an epidural grid for motor cortex stimulation in two cases of intractable pain. CONCLUSION Combined x-ray and MRI-guided stereotactic and functional neurosurgery is feasible. Augmentation of x-ray projection images with MRI scan data, such as planned probe trajectories and MRI scan segmented anatomic structures may be beneficial for probe guidance in stereotactic and functional neurosurgery.
Collapse
Affiliation(s)
- Stefan Hunsche
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Zarucco L, Wisner ER, Swanstrom MD, Stover SM. IMAGE FUSION OF COMPUTED TOMOGRAPHIC AND MAGNETIC RESONANCE IMAGES FOR THE DEVELOPMENT OF A THREE-DIMENSIONAL MUSCULOSKELETAL MODEL OF THE EQUINE FORELIMB. Vet Radiol Ultrasound 2006; 47:553-62. [PMID: 17153064 DOI: 10.1111/j.1740-8261.2006.00185.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Biomechanical models that compute the lengths and forces of muscle-tendon units are broadly applicable to the study of factors that promote injury and the planning and effects of orthopedic surgical procedures in equine athletes. A three-dimensional (3D) generic musculoskeletal model of the equine forelimb comprised of bony segment, muscle-tendon, and ligament information, was developed based on high-resolution computed tomographic (CT) and T1-weighted magnetic resonance (MR) images from an isolated forelimb of a Thoroughbred racehorse. Image fusion was achieved through coregistration of CT and MR images with an image analysis program (Analyze) by adjustment of the relative position and orientation of fiducial markers visible in both modalities until the mutual information between the images was maximized. 3D surfaces of the bones and origin/insertion sites, centroid paths and volumes of the muscle-tendon and ligamentous structures were obtained from the multimodal (CT/MR) images using semiautomated and manual segmentation combined with sagittal and transverse color-cryosection anatomic images obtained from three other cadaveric equine forelimbs. Once bony and soft-tissue structures were reconstructed in the same coordinate system, data were imported to a software package for interactive musculoskeletal modeling (SIMM). The combination of integrated CT and MR acquisitions and anatomical images provided an accurate and efficient means of generating a 3D model of the musculoskeletal structures of an average-sized equine adult horse.
Collapse
Affiliation(s)
- Laura Zarucco
- J. D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|