Smital L, Haider CR, Vitek M, Leinveber P, Jurak P, Nemcova A, Smisek R, Marsanova L, Provaznik I, Felton CL, Gilbert BK, Holmes Iii DR. Real-Time Quality Assessment of Long-Term ECG Signals Recorded by Wearables in Free-Living Conditions.
IEEE Trans Biomed Eng 2020;
67:2721-2734. [PMID:
31995473 DOI:
10.1109/tbme.2020.2969719]
[Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Nowadays, methods for ECG quality assessment are mostly designed to binary distinguish between good/bad quality of the whole signal. Such classification is not suitable to long-term data collected by wearable devices. In this paper, a novel approach to estimate long-term ECG signal quality is proposed.
METHODS
The real-time quality estimation is performed in a local time window by calculation of continuous signal-to-noise ratio (SNR) curve. The layout of the data quality segments is determined by analysis of SNR waveform. It is distinguished between three levels of ECG signal quality: signal suitable for full wave ECG analysis, signal suitable only for QRS detection, and signal unsuitable for further processing.
RESULTS
The SNR limits for reliable QRS detection and full ECG waveform analysis are 5 and 18 dB respectively. The method was developed and tested using synthetic data and validated on real data from wearable device.
CONCLUSION
The proposed solution is a robust, accurate and computationally efficient algorithm for annotation of ECG signal quality that will facilitate the subsequent tailored analysis of ECG signals recorded in free-living conditions.
SIGNIFICANCE
The field of long-term ECG signals self-monitoring by wearable devices is swiftly developing. The analysis of massive amount of collected data is time consuming. It is advantageous to characterize data quality in advance and thereby limit consequent analysis to useable signals.
Collapse