1
|
Chen Z, Pazdernik M, Zhang H, Wahle A, Guo Z, Bedanova H, Kautzner J, Melenovsky V, Kovarnik T, Sonka M. Quantitative 3D Analysis of Coronary Wall Morphology in Heart Transplant Patients: OCT-Assessed Cardiac Allograft Vasculopathy Progression. Med Image Anal 2018; 50:95-105. [PMID: 30253306 PMCID: PMC6237624 DOI: 10.1016/j.media.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/26/2018] [Accepted: 09/05/2018] [Indexed: 01/25/2023]
Abstract
Cardiac allograft vasculopathy (CAV) accounts for about 30% of all heart-transplant (HTx) patient deaths. For patients at high risk for CAV complications after HTx, therapy must be initiated early to be effective. Therefore, new phenotyping approaches are needed to identify such HTx patients at the earliest possible time. Coronary optical coherence tomography (OCT) images were acquired from 50 HTx patients 1 and 12 months after HTx. Quantitative analysis of coronary wall morphology used LOGISMOS segmentation strategy to simultaneously identify three wall-layer surfaces for the entire pullback length in 3D: luminal, outer intimal, and outer medial surfaces. To quantify changes of coronary wall morphology between 1 and 12 months after HTx, the two pullbacks were mutually co-registered. Validation of layer thickness measurements showed high accuracy of performed layer analyses with layer thickness measures correlating well with manually-defined independent standard (Rautomated2 = 0.93, y=1.0x-6.2μm), average intimal+medial thickness errors were 4.98 ± 31.24 µm, comparable with inter-observer variability. Quantitative indices of coronary wall morphology 1 month and 12 months after HTx showed significant local as well as regional changes associated with CAV progression. Some of the newly available fully-3D baseline indices (intimal layer brightness, medial layer brightness, medial thickness, and intimal+medial thickness) were associated with CAV-related progression of intimal thickness showing promise of identifying patients subjected to rapid intimal thickening at 12 months after HTx from OCT-image data obtained just 1 month after HTx. Our approach allows quantification of location-specific alterations of coronary wall morphology over time and is sensitive even to very small changes of wall layer thicknesses that occur in patients following heart transplant.
Collapse
Affiliation(s)
- Zhi Chen
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Michal Pazdernik
- Institute of Clinical and Experimental Medicine (IKEM) in Prague, Czech Republic
| | - Honghai Zhang
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Andreas Wahle
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhihui Guo
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Helena Bedanova
- Cardiovascular and Transplantation Surgery Center, Department of Cardiovascular Diseases, St. Annes University Hospital and Masaryk University Brno, Czech Republic
| | - Josef Kautzner
- Institute of Clinical and Experimental Medicine (IKEM) in Prague, Czech Republic
| | - Vojtech Melenovsky
- Institute of Clinical and Experimental Medicine (IKEM) in Prague, Czech Republic
| | - Tomas Kovarnik
- 2nd Department of Medicine - Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Czech Republic
| | - Milan Sonka
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Houissa K, Ryan N, Escaned J, Cruden NL, Uren N, Slots T, Kayaert P, Carlier SG. Validation of a Novel System for Co-Registration of Coronary Angiographic and Intravascular Ultrasound Imaging. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2018; 20:775-781. [PMID: 30420279 DOI: 10.1016/j.carrev.2018.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Intravascular ultrasound (IVUS) is a useful adjunct to guide percutaneous coronary intervention (PCI). Correlating IVUS images with angiographic findings can be challenging. We evaluated the utility of a novel co-registration system for IVUS and coronary angiography. METHODS AND RESULTS A 3-D virtual catheter trajectory was constructed from separate angiographic imaging runs using bespoke software. Intravascular ultrasound images were obtained using a commercially available mechanical rotational transducer with motorized pullback. Co-registration of ultrasound and angiographic images was then performed retrospectively based on the length of pullback, the 3-D trajectory and the start position of the catheter. Validation was performed in a spherical phantom model and in vivo in the coronary circulation of patients undergoing coronary angiography and intravascular imaging for clinical purposes. 111 paired angiographic and IVUS runs were performed in 3 phantom models. The differences between the reference length and the length measured on the 3D reconstructed path was -0.01 ± 0.40 mm. Intra-observer variability was 0.4%. We enrolled 25 patients in 3 European hospitals and performed 35 co-registration attempts with an 86% success rate. 71 landmarks were selected by the first operator, 68 by the second. Differences between angiographic and IVUS landmarks were -0.22 ± 0.72 mm and 0.05 ± 1.01 mm, respectively. Inter-observer variability was 0.23 ± 0.63 mm. CONCLUSION We present a novel method for the co-registration of IVUS and coronary angiographic images. This system performed well in a phantom model and using images obtained from the human coronary circulation. CLASSIFICATIONS Innovation, intravascular ultrasound, other technique.
Collapse
Affiliation(s)
| | - Nicola Ryan
- Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Javier Escaned
- Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Neal Uren
- Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
3
|
Shi C, Luo X, Guo J, Najdovski Z, Fukuda T, Ren H. Three-Dimensional Intravascular Reconstruction Techniques Based on Intravascular Ultrasound: A Technical Review. IEEE J Biomed Health Inform 2018; 22:806-817. [DOI: 10.1109/jbhi.2017.2703903] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Guo X, Giddens DP, Molony D, Yang C, Samady H, Zheng J, Mintz GS, Maehara A, Wang L, Pei X, Li ZY, Tang D. Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach. J Biomech Eng 2018; 140:2659953. [PMID: 29059332 PMCID: PMC5816254 DOI: 10.1115/1.4038263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/04/2017] [Indexed: 12/26/2022]
Abstract
Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. Virtual histology intravascular ultrasound (VH-IVUS) sets cap thickness to zero when cap is under resolution limit and IVUS does not see it. An innovative modeling approach combining IVUS and optical coherence tomography (OCT) is introduced for cap thickness quantification and more accurate cap stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired with informed consent obtained. IVUS and OCT images were merged to form the IVUS + OCT data set, with biplane angiography providing three-dimensional (3D) vessel curvature. For components where VH-IVUS set zero cap thickness (i.e., no cap), a cap was added with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for model construction, respectively. 3D fluid-structure interaction (FSI) models based on IVUS + OCT, IVUS50, and IVUS180 data sets were constructed to investigate cap thickness impact on stress/strain calculations. Compared to IVUS + OCT, IVUS50 underestimated mean cap thickness (27 slices) by 34.5%, overestimated mean cap stress by 45.8%, (96.4 versus 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS + OCT model (564.2 versus 354.5 kPa). Differences between IVUS and IVUS + OCT models for cap strain and flow shear stress (FSS) were modest (cap strain <12%; FSS <6%). IVUS + OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for further plaque investigations.
Collapse
Affiliation(s)
- Xiaoya Guo
- Department of Mathematics, Southeast University, Nanjing 210096, China
| | - Don P Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - David Molony
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
| | - Chun Yang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10022
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10022
| | - Liang Wang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Xuan Pei
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhi-Yong Li
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing 210096, China
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| |
Collapse
|
5
|
Mozaffari MH, Lee WS. Freehand 3-D Ultrasound Imaging: A Systematic Review. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2099-2124. [PMID: 28716431 DOI: 10.1016/j.ultrasmedbio.2017.06.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 05/20/2023]
Abstract
Two-dimensional ultrasound (US) imaging has been successfully used in clinical applications as a low-cost, portable and non-invasive image modality for more than three decades. Recent advances in computer science and technology illustrate the promise of the 3-D US modality as a medical imaging technique that is comparable to other prevalent modalities and that overcomes certain drawbacks of 2-D US. This systematic review covers freehand 3-D US imaging between 1970 and 2017, highlighting the current trends in research fields, the research methods, the main limitations, the leading researchers, standard assessment criteria and clinical applications. Freehand 3-D US systems are more prevalent in the academic environment, whereas in clinical applications and industrial research, most studies have focused on 3-D US transducers and improvement of hardware performance. This topic is still an interesting active area for researchers, and there remain many unsolved problems to be addressed.
Collapse
Affiliation(s)
- Mohammad Hamed Mozaffari
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Ontario, Canada.
| | - Won-Sook Lee
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Frimerman A, Abergel E, Blondheim DS, Shotan A, Meisel S, Shochat M, Punjabi P, Roguin A. Novel Method for Real Time Co-Registration of IVUS and Coronary Angiography. J Interv Cardiol 2016; 29:225-31. [DOI: 10.1111/joic.12279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Aharon Frimerman
- Department of Cardiology; Hillel-Yaffe Medical Center; Hadera 38100 Israel
| | - Eitan Abergel
- Department of Cardiology; Rambam Medical Center; Rappaport Faculty of Medicine, Technion- Israel Institute of Technology; Haifa 3109601 Israel
| | - David S. Blondheim
- Department of Cardiology; Hillel-Yaffe Medical Center; Hadera 38100 Israel
| | - Avraham Shotan
- Department of Cardiology; Hillel-Yaffe Medical Center; Hadera 38100 Israel
| | - Simcha Meisel
- Department of Cardiology; Hillel-Yaffe Medical Center; Hadera 38100 Israel
| | - Michael Shochat
- Department of Cardiology; Hillel-Yaffe Medical Center; Hadera 38100 Israel
| | - Pritesh Punjabi
- Department of Cardiology; Rambam Medical Center; Rappaport Faculty of Medicine, Technion- Israel Institute of Technology; Haifa 3109601 Israel
| | - Ariel Roguin
- Department of Cardiology; Rambam Medical Center; Rappaport Faculty of Medicine, Technion- Israel Institute of Technology; Haifa 3109601 Israel
| |
Collapse
|
7
|
Co-registration of optical coherence tomography and X-ray angiography in percutaneous coronary intervention. The Does Optical Coherence Tomography Optimize Revascularization (DOCTOR) fusion study. Int J Cardiol 2015; 182:272-8. [DOI: 10.1016/j.ijcard.2014.12.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/25/2014] [Indexed: 11/23/2022]
|
8
|
Ecabert O, Chen T, Wels M, Rieber J, Ostermeier M, Comaniciu D. Image-based Co-Registration of Angiography and Intravascular Ultrasound Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:2238-2249. [PMID: 24001984 DOI: 10.1109/tmi.2013.2279754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In image-guided cardiac interventions, X-ray imaging and intravascular ultrasound (IVUS) imaging are two often used modalities. Interventional X-ray images, including angiography and fluoroscopy, are used to assess the lumen of the coronary arteries and to monitor devices in real time. IVUS provides rich intravascular information, such as vessel wall composition, plaque, and stent expansions, but lacks spatial orientations. Since the two imaging modalities are complementary to each other, it is highly desirable to co-register the two modalities to provide a comprehensive picture of the coronaries for interventional cardiologists. In this paper, we present a solution for co-registering 2-D angiography and IVUS through image-based device tracking. The presented framework includes learning-based vessel detection and device detections, model-based tracking, and geodesic distance-based registration. The system first interactively detects the coronary branch under investigation in a reference angiography image. During the pullback of the IVUS transducers, the system acquires both ECG-triggered fluoroscopy and IVUS images, and automatically tracks the position of the medical devices in fluoroscopy. The localization of tracked IVUS transducers and guiding catheter tips is used to associate an IVUS imaging plane to a corresponding location on the vessel branch under investigation. The presented image-based solution can be conveniently integrated into existing cardiology workflow. The system is validated with a set of clinical cases, and achieves good accuracy and robustness.
Collapse
|
9
|
Zheng S, Mengchan L. Reconstruction of coronary vessels from intravascular ultrasound image sequences based on compensation of the in-plane motion. Comput Med Imaging Graph 2013; 37:618-27. [DOI: 10.1016/j.compmedimag.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
10
|
Optical Coherence Tomography for Patient-specific 3D Artery Reconstruction and Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery. Cardiovasc Eng Technol 2011. [DOI: 10.1007/s13239-011-0047-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
|
12
|
|
13
|
Unal G, Slabaugh G, Kakadiaris IA, Tannenbaum A. Introduction to the special section on computer vision for intravascular and intracardiac imaging. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2008; 12:273-6. [PMID: 18693494 PMCID: PMC3646520 DOI: 10.1109/titb.2008.920458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
14
|
Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TMH, Rossen JD, Sonka M, Chandran KB. Comparison of left anterior descending coronary artery hemodynamics before and after angioplasty. J Biomech Eng 2006; 128:40-8. [PMID: 16532616 DOI: 10.1115/1.2132371] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronary artery disease (CAD) is characterized by the progression of atherosclerosis, a complex pathological process involving the initiation, deposition, development, and breakdown of the plaque. The blood flow mechanics in arteries play a critical role in the targeted locations and progression of atherosclerotic plaque. In coronary arteries with motion during the cardiac contraction and relaxation, the hemodynamic flow field is substantially different from the other arterial sites with predilection of atherosclerosis. In this study, our efforts focused on the effects of arterial motion and local geometry on the hemodynamics of a left anterior descending (LAD) coronary artery before and after clinical intervention to treat the disease. Three-dimensional (3D) arterial segments were reconstructed at 10 phases of the cardiac cycle for both pre- and postintervention based on the fusion of intravascular ultrasound (IVUS) and biplane angiographic images. An arbitrary Lagrangian-Eulerian formulation was used for the computational fluid dynamic analysis. The measured arterial translation was observed to be larger during systole after intervention and more out-of-plane motion was observed before intervention, indicating substantial alterations in the cardiac contraction after angioplasty. The time averaged axial wall shear stress ranged from -0.2 to 9.5 Pa before intervention compared to -0.02 to 3.53 Pa after intervention. Substantial oscillatory shear stress was present in the preintervention flow dynamics compared to that in the postintervention case.
Collapse
Affiliation(s)
- S D Ramaswamy
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
van Walsum T, Baert SAM, Niessen WJ. Guide wire reconstruction and visualization in 3DRA using monoplane fluoroscopic imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2005; 24:612-23. [PMID: 15889549 DOI: 10.1109/tmi.2005.844073] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A method has been developed that, based on the guide wire position in monoplane fluoroscopic images, visualizes the approximate guide wire position in the three-dimensional (3-D) vasculature, that is obtained prior to the intervention with 3-D rotational X-ray angiography (3DRA). The method assumes the position of the guide wire in the fluoroscopic images is known. A two-dimensional feature image is determined from the 3DRA data. In this feature image, the guide wire position is determined in a two-step approach: a mincost algorithm is used to determine a suitable position for the guide wire, and subsequently a snake optimization technique is applied to move the guide wire to a better position. The resulting guide wire can then be visualized in 3-D in combination with the 3DRA dataset. The reconstruction accuracy of the method has been evaluated using a 3DRA image of a vascular phantom filled with contrast, and monoplane fluoroscopic images of the same phantom without contrast and with a guide wire inserted. The evaluation has been performed for different projection angles, and with different parameters for the method. The final result does not appear to be very sensitive to the parameters of the method. The average mean error of the estimated 3-D guide wire position is 1.5 mm, and the average tip distance is 2.3 mm. The effect of inaccurate C-arm geometry information is also investigated. Small errors in geometry information (up to 1 degrees) will slightly decrease the 3-D reconstruction accuracies, with an error of at most 1 mm. The feasibility of this approach on clinical data is demonstrated.
Collapse
Affiliation(s)
- Theo van Walsum
- Image Sciences Institute, University Medical Center Utrecht, Room E.01.335, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
16
|
Zheng MM, Krishnan SM, Tjoa MP. A fusion-based clinical decision support for disease diagnosis from endoscopic images. Comput Biol Med 2005; 35:259-74. [PMID: 15582632 DOI: 10.1016/j.compbiomed.2004.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Accepted: 01/02/2004] [Indexed: 02/07/2023]
Abstract
This paper presents an intelligent decision support system designed on a decision fusion framework coupled with a priori knowledge base for abnormality detection from endoscopic images. Sub-decisions are made based on associated component feature sets derived from the endoscopic images and predefined algorithms, and subsequently fused to classify the patient state. Bayesian probability computations are employed to evaluate the accuracies of sub-decisions, which are utilized in estimating the probability of the fused decision. The overall detectability of abnormalities by using the proposed fusion approach is improved in terms of detection of true positive and true negative conditions when compared with corresponding results from individual methods.
Collapse
Affiliation(s)
- M M Zheng
- Biomedical Engineering Research Center, School of Electrical and Electronic Engineering, Nanyang Technological University, NS4-04-33, Xfrontiers Block, 6th Storey, Singapore 637553, Singapore.
| | | | | |
Collapse
|
17
|
Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TMH, Rossen JD, Sonka M, Chandran KB. Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery with Arterial Motion. Ann Biomed Eng 2004; 32:1628-41. [PMID: 15675676 DOI: 10.1007/s10439-004-7816-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational fluid dynamic (CFD) analysis is pre sented to describe local flow dynamics in both 3-D spatial and 4-D spatial and temporal domains from reconstructions of intravascular ultrasound (IVUS) and bi-plane angiographic fusion images. A left anterior descending (LAD) coronary artery segment geometry was accurately reconstructed and subsequently its motion was incorporated into the CFD model. The results indicate that the incorporation of motion had appreciable effects on blood flow patterns. The velocity profiles in the region of a stenosis and the circumferential distribution of the axial wall shear stress (WSS) patterns in the vessel are altered with the wall motion introduced in the simulation. The time-averaged axial WSS between simulations of steady flow and unsteady flow without arterial motion were comparable (-0.3 to 13.7 Pa in unsteady flow versus -0.2 to 10.1 Pa in steady flow) while the magnitudes decreased when motion was introduced (0.3-4.5 Pa). The arterial wall motion affects the time-mean WSS and the oscillatory shear index in the coronary vessel fluid dynamics and may provide more realistic predictions on the progression of atherosclerotic disease.
Collapse
Affiliation(s)
- S D Ramaswamy
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wahle A, Olszewski ME, Sonka M. Interactive virtual endoscopy in coronary arteries based on multimodality fusion. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:1391-1403. [PMID: 15554127 DOI: 10.1109/tmi.2004.837109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel approach for platform-independent virtual endoscopy in human coronary arteries is presented in this paper. It incorporates previously developed and validated methodology for multimodality fusion of two X-ray angiographic images with pullback data from intravascular ultrasound (IVUS). These modalities pose inherently different challenges than those present in many tomographic modalities that provide parallel slices. The fusion process results in a three- or four-dimensional (3-D/4-D) model of a coronary artery, specifically of its lumen/plaque and media/adventitia surfaces. The model is used for comprehensive quantitative hemodynamic, morphologic, and functional analyses. The resulting quantitative indexes are then used to supplement the model. Platform-independent visualization is achieved through the use of the ISO/IEC-standardized Virtual Reality Modeling Language (VRML). The visualization includes an endoscopic fly-through animation that enables the user to interactively select vessel location and fly-through speed, as well as to display image pixel data or quantification results in 3-D. The presented VRML virtual-endoscopy system is used in research studies of coronary atherosclerosis development, quantitative assessment of coronary morphology and function, and vascular interventions.
Collapse
Affiliation(s)
- Andreas Wahle
- University of Iowa, Department of Electrical and Computer Engineering, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
19
|
Yang F, Holzapfel G, Schulze-Bauer C, Stollberger R, Thedens D, Bolinger L, Stolpen A, Sonka M. Segmentation of wall and plaque in in vitro vascular MR images. Int J Cardiovasc Imaging 2004; 19:419-28. [PMID: 14609192 DOI: 10.1023/a:1025829232098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atherosclerosis leads to heart attack and stroke, which are major killers in the western world. These cardiovascular events frequently result from local rupture of vulnerable atherosclerotic plaque. Non-invasive assessment of plaque vulnerability would dramatically change the way in which atherosclerotic disease is diagnosed, monitored, and treated. In this paper, we report a computerized method for segmentation of arterial wall layers and plaque from high-resolution volumetric MR images. The method uses dynamic programming to detect optimal borders in each MRI frame. The accuracy of the results was tested in 62 T1-weighted MR images from six vessel specimens in comparison to borders manually determined by an expert observer. The mean signed border positioning errors for the lumen, internal elastic lamina, and external elastic lamina borders were -0.1 +/- 0.1, 0.0 +/- 0.1, and -0.1 +/- 0.1 mm, respectively. The presented wall layer segmentation approach is one of the first steps towards non-invasive assessment of plaque vulnerability in atherosclerotic subjects.
Collapse
Affiliation(s)
- Fuxing Yang
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wahle A, Lopez JJ, Pennington EC, Meeks SL, Braddy KC, Fox JM, Brennan TMH, Buatti JM, Rossen JD, Sonka M. Effects of vessel geometry and catheter position on dose delivery in intracoronary brachytherapy. IEEE Trans Biomed Eng 2003; 50:1286-95. [PMID: 14619999 DOI: 10.1109/tbme.2003.818474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In-stent restenosis is commonly observed in coronary arteries after intervention. Intravascular brachytherapy has been found effective in reducing the recurrence of restenosis after stent placement. Conventional dosing models for brachytherapy with beta (beta) radiation neglect vessel geometry as well as the position of the delivery catheter. This paper demonstrates in computer simulations on phantoms and on in vivo patient data that the estimated dose distribution varies substantially in curved vessels. In simulated phantoms of 50-mm length with a shape corresponding to a 60 degrees - 180 degrees segment of a respectively sized torus, the average dose in 2-mm depth was decreased by 2.70%-7.48% at the outer curvature and increased by 2.95%-9.70% at the inner curvature as compared with a straight phantom. In vivo data were represented in a geometrically correct three-dimensional model that was derived by fusion of intravascular ultrasound (IVUS) and biplane angiography. These data were compared with a simplified tubular model reflecting common assumptions of conventional dosing schemes. The simplified model yielded significantly lower estimates of the delivered radiation and the dose variability as compared with a geometrically correct model (p < 0.001). The estimated dose in ten vessel segments of eight patients was on average 8.76% lower at the lumen/plaque and 6.52% lower at the media/adventitia interfaces (simplified tubular model relative to geometrically correct model). The differences in dose estimates between the two models were significantly higher in the right coronary artery as compared with the left coronary artery (p < 0.001).
Collapse
Affiliation(s)
- Andreas Wahle
- Department of Electrical and Computer Engineering, 3320 Seamans Center for Engineering, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Coskun AU, Yeghiazarians Y, Kinlay S, Clark ME, Ilegbusi OJ, Wahle A, Sonka M, Popma JJ, Kuntz RE, Feldman CL, Stone PH. Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans. Catheter Cardiovasc Interv 2003; 60:67-78. [PMID: 12929106 DOI: 10.1002/ccd.10594] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to assess the reproducibility of an in vivo methodology to reconstruct the lumen, plaque, and external elastic membrane (EEM) of coronary arteries and estimate endothelial shear stress (ESS). Ten coronary arteries without significant stenoses (five native and five stented arteries) were investigated. The 3D lumen and EEM boundaries of each coronary artery were determined by fusing end-diastolic intravascular ultrasound images with biplane coronary angiograms. Coronary flow was measured. Computational fluid dynamics was used to calculate local ESS. Complete data acquisition was then repeated. Analysis was performed on each data set in a blinded manner. The intertest correlation coefficients for all arteries for the two measurements of lumen radius, EEM radius, plaque thickness, and ESS were r = 0.96, 0.96, 0.94, 0.91, respectively (all P values < 0.0001). The 3D anatomy and ESS of human coronary arteries can be reproducibly estimated in vivo. This methodology provides a tool to examine the effect of ESS on atherogenesis, remodeling, and restenosis; the contribution of arterial remodeling and plaque growth to changes in the lumen; and the impact of new therapies.
Collapse
Affiliation(s)
- Ahmet U Coskun
- Department of Mechanical, Industrial and Manufacturing Engineering, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Klingensmith JD, Schoenhagen P, Tajaddini A, Halliburton SS, Tuzcu EM, Nissen SE, Vince DG. Automated three-dimensional assessment of coronary artery anatomy with intravascular ultrasound scanning. Am Heart J 2003; 145:795-805. [PMID: 12766735 DOI: 10.1016/s0002-8703(03)00089-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Angiography allows the definition of advanced, severe stages of coronary artery disease, but early atherosclerotic lesions, which do not lead to luminal stenosis, are not identified reliably. In contrast, intravascular ultrasound scanning allows the precise characterization and quantification of a wide range of atherosclerotic lesions, independent of the severity of luminal stenosis. METHODS Three-dimensional (3-D) reconstruction of entire coronary segments is possible with the integration of sequential 2-dimensional tomographic images and allows volumetric analysis of coronary arteries. RESULTS Automated systems able to recognize lumen and vessel borders and to display 3-D images are becoming available. CONCLUSION These systems have the potential for on-line 3-D image reconstruction for clinical decision-making and fast routine volumetric analysis in research studies. This review describes 3-D intravascular ultrasound scanning acquisition, analysis, and processing, and the associated technical challenges.
Collapse
Affiliation(s)
- Jon D Klingensmith
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Koning G, Dijkstra J, von Birgelen C, Tuinenburg JC, Brunette J, Tardif JC, Oemrawsingh PW, Sieling C, Melsa S, Reiber JHC. Advanced contour detection for three-dimensional intracoronary ultrasound: a validation--in vitro and in vivo. Int J Cardiovasc Imaging 2002; 18:235-48. [PMID: 12123316 DOI: 10.1023/a:1015551920382] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intracoronary ultrasound (ICUS) provides high-resolution transmural images of the arterial wall. By performing a pullback of the ICUS transducer and three-dimensional reconstruction of the images, an advanced assessment of the lumen and vessel wall morphology can be obtained. To reduce the analysis time and the subjectivity of boundary tracing, automated segmentation of the image sequence must be performed. The Quantitative Coronary Ultrasound-Clinical Measurement Solutions (QCU-CMS) (semi)automated analytical software package uses a combination of transversal and longitudinal model- and knowledge-guided contour detection techniques. On multiple longitudinal sections through the pullback stack, the external vessel contours are detected simultaneously, allowing mutual guidance of the detection in difficult areas. Subsequently, luminal contours are detected on these longitudinal sections. Vessel and luminal contour points are transformed to the individual cross-sections, where they guide the vessel and lumen contour detection on these transversal images. The performance of the software was validated stepwise. A set of phantoms was used to determine the systematic and random errors of the contour detection of external vessel and lumen boundaries. Subsequently, the results of the contour detection as obtained in in vivo image sets were compared with expert manual tracing, and finally the contour detection in in vivo image sequences was compared with results obtained from another previously validated ICUS quantification system. The phantom lumen diameters were underestimated by 0.1 mm, equally by the QCU-CMS software and by manual tracing. Comparison of automatically detected contours and expert manual contours, showed that lumen contours correspond very well (systematic and random radius difference: -0.025 +/- 0.067 mm), while automatically detected vessel contours slightly overestimated the expert manual contours (radius difference: 0.061 +/- 0.037 mm). The cross-sectional vessel and lumen areas as detected with our system and with the second computerized system showed a high correlation (r = 0.995 and 0.978, respectively). Thus, use of the new QCU-CMS analytical software is feasible and the validation data suggest its application for the analysis of clinical research.
Collapse
Affiliation(s)
- Gerhard Koning
- Department of Radiology, Leiden University Medical Center, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wellnhofer E, Wahle A, Fleck E. Progression of coronary atherosclerosis quantified by analysis of 3-D reconstruction of left coronary arteries. Atherosclerosis 2002; 160:483-93. [PMID: 11849675 DOI: 10.1016/s0021-9150(01)00609-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Quantitative measurements on three-dimensional (3-D) reconstructed coronary trees permit accurate evaluation of vascular volumes, lengths and diameters. We applied this technique to investigate diffuse luminal narrowing in patients with the clinical manifestation of progressive atherosclerosis. METHODS In 13 patients who presented repeatedly for coronary angioplasty (at least 4 years of invasive follow-up), left coronary arteries were reconstructed in 3-D from biplane coronary angiograms. Mean diameter, cross-sectional areas, total length, and volume were calculated for segments and branches. Five patients without coronary artery disease served as controls. RESULTS Patients with progressive coronary atherosclerosis demonstrated a significant reduction of total vascular volumes, mean diameters and cross-sectional areas at the initial investigation when compared with controls. Progressive luminal shrinkage occurred during follow-up (-0.04+/-0.13 mm per year and per segmental diameter). The progress of luminal narrowing in patients with coronary artery disease is related to the number of coronary risk factors and the duration of follow-up. CONCLUSION Quantitative measurements on 3-D reconstructed coronary trees are a useful investigative tool for the assessment of progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Ernst Wellnhofer
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | |
Collapse
|
25
|
Dijkstra J, Koning G, Tuinenburg JC, Oemrawsingh PV, von Birgelen C, Reiber JH. Automatic border detection in IntraVascular UltraSound images for quantitative measurements of the vessel, lumen and stent parameters. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0531-5131(01)00155-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|