1
|
Park CKS, Aziz A, Trumpour T, Bax JS, Tessier D, Gyacskov I, Gardi L, Fenster A. Three-dimensional complementary breast ultrasound (3D CBUS): Improving 3D spatial resolution uniformity with orthogonal images. Med Phys 2025; 52:2438-2453. [PMID: 39844441 DOI: 10.1002/mp.17626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution. Consequently, any oblique view plane in an acquired 3DUS image will contain high in-plane and poor out-of-plane resolution components, diminishing spatial resolution uniformity and overall diagnostic utility. PURPOSE To develop and validate a novel 3D complementary breast ultrasound (CBUS) approach to improve 3DUS spatial resolution uniformity using a conventional US transducer by acquiring and generating orthogonal 3DUS images. METHODS We previously developed a cost-effective, portable, dedicated 3D ABUS system consisting of a wearable base, a compression assembly, and a mechanically driven scanner for automated 3DUS image acquisition, compatible with any commercial linear US transducer. For this system, we have proposed 3D CBUS approach which involves acquiring and registering orthogonal 3DUS images (V A ${V}_A$ andV B ${V}_B$ ) with an aim of overcoming the poor resolution uniformity in the scanning direction in 3D US images. The voxel intensity values in the 3D CBUS image are computed with a spherical-weighted algorithm from the original orthogonal 3DUS images. Experimental validation was performed with 2DUS frame densities of 2, 4, 6 frames mm-1 using an agar-based phantom with a speed of sound of 1540 ms-1 and an embedded nylon bead. Lateral and axial full-width at half-maximum (FWHMLAT and FWHMAX) values were calculated from cross-sections taken at polar view planes ranging from 0° to 90° for 3DUS and 3D CBUS images of a bead phantom in focal zone and far field regions. Kendall's Tau-b correlation coefficients were calculated between FWHM measurements and cross-section angle for all frame density settings at a significance level ofα = 0.05 $\alpha = 0.05$ . Volumetric 3D segmentations were performed for 3DUS and 3D CBUS images of an inclusion phantom to confirm volumetric reconstruction accuracy. For statistical analysis, a repeated measures ANOVA with the Greenhouse-Geisser correction was performed at a significance level ofα = 0.05 $\alpha = 0.05$ . RESULTS Experimental validation of the orthogonal 3DUS images show complementary trends of increasing and decreasing FWHMLAT from in-plane to out-of-plane (0° and 90° and vice versa) views. This is exemplified with the scan taken at 4 frames mm-1 in the focal zone, where FWHMLAT ranges from 3.51 to 1.10 mm forV A ${V}_A$ and 1.02-3.02 mm forV B ${V}_B$ , spanning 0°-90°, respectively. When combined in the 3D CBUS image, the FWHMLAT exhibits greater uniformity across view angles by mitigating poor out-of-plane resolution using its complementary in-plane component, with corresponding FWHMLAT values of 1.27 and 1.46 mm. While visual enhancements were seen in the 3D CBUS image, no statistically significant differences were found in volumetric measurements of the spherical inclusions in the 3DUS and 3D CBUS images. CONCLUSION The out-of-plane resolution in the orthogonal 3DUS images is improved upon their combination into a single 3D CBUS image. These results demonstrate that the proposed 3D CBUS generation approach can improve 3D spatial resolution uniformity, while employing a commercial US transducer. The proposed 3D CBUS method shows potential utility for improving image resolution uniformity in 3D ABUS images, with the goal of improving point-of-care breast cancer supplemental screening and diagnostic applications, particularly in women with dense breasts and limited resource settings.
Collapse
Affiliation(s)
- Claire Keun Sun Park
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amal Aziz
- Robarts Research Institute, London, Ontario, Canada
- School of Biomedical Engineering, Faculty of Engineering, Western University, London, Ontario, Canada
| | - Tiana Trumpour
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
| | | | | | | | - Lori Gardi
- Robarts Research Institute, London, Ontario, Canada
| | - Aaron Fenster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
- School of Biomedical Engineering, Faculty of Engineering, Western University, London, Ontario, Canada
- Division of Imaging Sciences, Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Fan K, Cai Y, Shen E, Wang Y, Yuan J, Tao C, Liu X. Elevation Resolution Enhancement Oriented 3D Ultrasound Imaging. ULTRASONIC IMAGING 2024; 46:220-232. [PMID: 38903053 DOI: 10.1177/01617346241259049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Three-dimensional (3D) ultrasound imaging can be accomplished by reconstructing a sequence of two-dimensional (2D) ultrasound images. However, 2D ultrasound images usually suffer from low resolution in the elevation direction, thereby impacting the accuracy of 3D reconstructed results. The lateral resolution of 2D ultrasound is known to significantly exceed the elevation resolution. By combining scanning sequences acquired from orthogonal directions, the effects of poor elevation resolution can be mitigated through a composite reconstructing process. Moreover, capturing ultrasound images from multiple perspectives necessitates a precise probe positioning method with a wide angle of coverage. Optical tracking is popularly used for probe positioning for its high accuracy and environment-robustness. In this paper, a novel large-angle accurate optical positioning method is used for enhancing resolution in 3D ultrasound imaging through orthogonal-view scanning and composite reconstruction. Experiments on two phantoms proved that our method could significantly improve reconstruction accuracy in the elevation direction of the probe compared with single-angle parallel scanning. The results indicate that our method holds the potential to improve current 3D ultrasound imaging techniques.
Collapse
Affiliation(s)
- Kai Fan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yunye Cai
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Enxiang Shen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yuxin Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Jie Yuan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Chao Tao
- School of Physics, Nanjing University, Nanjing, China
| | - Xiaojun Liu
- School of Physics, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Makra A, Bost W, Kallo I, Horvath A, Fournelle M, Gyongy M. Enhancement of Acoustic Microscopy Lateral Resolution: A Comparison Between Deep Learning and Two Deconvolution Methods. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:136-145. [PMID: 31502966 DOI: 10.1109/tuffc.2019.2940003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scanning acoustic microscopy (SAM) provides high-resolution images of biological tissues. Since higher transducer frequencies limit penetration depth, image resolution enhancement techniques could help in maintaining sufficient lateral resolution without sacrificing penetration depth. Compared with existing SAM research, this work introduces two novelties. First, deep learning (DL) is used to improve lateral resolution of 180-MHz SAM images, comparing it with two deconvolution-based approaches. Second, 316-MHz images are used as ground truth in order to quantitatively evaluate image resolution enhancement. The samples used were mouse and rat brain sections. The results demonstrate that DL can closely approximate ground truth (NRMSE = 0.056 and PSNR = 28.4 dB) even with a relatively limited training set (four images, each smaller than 1 mm ×1 mm). This study suggests the high potential of using DL as a single image superresolution method in SAM.
Collapse
|
4
|
Oralkan O, Ergun AS, Cheng CH, Johnson JA, Karaman M, Lee TH, Khuri-Yakub BT. Volumetric ultrasound imaging using 2-D CMUT arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2003; 50:1581-1594. [PMID: 14682642 DOI: 10.1109/tuffc.2003.1251142] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a candidate to overcome the difficulties in the realization of 2-D arrays for real-time 3-D imaging. In this paper, we present the first volumetric images obtained using a 2-D CMUT array. We have fabricated a 128 x 128-element 2-D CMUT array with through-wafer via interconnects and a 420-microm element pitch. As an experimental prototype, a 32 x 64-element portion of the 128 x 128-element array was diced and flip-chip bonded onto a glass fanout chip. This chip provides individual leads from a central 16 x 16-element portion of the array to surrounding bondpads. An 8 x 16-element portion of the array was used in the experiments along with a 128-channel data acquisition system. For imaging phantoms, we used a 2.37-mm diameter steel sphere located 10 mm from the array center and two 12-mm-thick Plexiglas plates located 20 mm and 60 mm from the array. A 4 x 4 group of elements in the middle of the 8 x 16-element array was used in transmit, and the remaining elements were used to receive the echo signals. The echo signal obtained from the spherical target presented a frequency spectrum centered at 4.37 MHz with a 100% fractional bandwidth, whereas the frequency spectrum for the echo signal from the parallel plate phantom was centered at 3.44 MHz with a 91% fractional bandwidth. The images were reconstructed by using RF beamforming and synthetic phased array approaches and visualized by surface rendering and multiplanar slicing techniques. The image of the spherical target has been used to approximate the point spread function of the system and is compared with theoretical expectations. This study experimentally demonstrates that 2-D CMUT arrays can be fabricated with high yield using silicon IC-fabrication processes, individual electrical connections can be provided using through-wafer vias, and flip-chip bonding can be used to integrate these dense 2-D arrays with electronic circuits for practical 3-D imaging applications.
Collapse
Affiliation(s)
- Omer Oralkan
- Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305-4088, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Mast TD, Gordon GA. Quantitative flaw reconstruction from ultrasonic surface wavefields measured by electronic speckle pattern interferometry. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2001; 48:432-444. [PMID: 11370357 DOI: 10.1109/58.911726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new method for imaging flaws in plate and shell structures is presented. The method employs two-dimensional ultrasonic surface wave data obtained by optical electronic speckle pattern interferometry (ESPI) techniques. In the imaging method, the measured out-of-plane displacement field associated with an externally excited ultrasonic Lamb wave is processed to obtain the spatial frequency domain spectrum of the wavefield. A free space Green's function is then deconvolved from the wavefield to obtain quantitative images of effective scattering sources. Because the strength of these effective sources is directly dependent on local variations in sample thickness and material properties, these images provide a direct map of internal inhomogeneities. Simulation results show that the method accurately images flaws for a wide range of sizes and material contrast ratios. These results also demonstrate that flaw features much smaller than an acoustic wavelength can be imaged, consistent with the theoretical capability of the imaging method to employ scattered evanescent waves. Reconstructions are also obtained from ultrasonic Lamb wave displacement fields recorded by ESPI in a flawed aluminum plate. These reconstructions indicate that the present method has potential for imaging flaws in complex structures for which ESPI wavefield measurements cannot be straightforwardly interpreted.
Collapse
Affiliation(s)
- T D Mast
- Applied Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
6
|
Colak SB, Papaioannou DG, 't Hooft GW, van der Mark MB, Schomberg H, Paasschens JC, Melissen JB, van Asten NA. Tomographic image reconstruction from optical projections in light-diffusing media. APPLIED OPTICS 1997; 36:180-213. [PMID: 18250660 DOI: 10.1364/ao.36.000180] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The recent developments in light generation and detection techniques have opened new possibilities for optical medical imaging, tomography, and diagnosis at tissue penetration depths of ~10 cm. However, because light scattering and diffusion in biological tissue are rather strong, the reconstruction of object images from optical projections needs special attention. We describe a simple reconstruction method for diffuse optical imaging, based on a modified backprojection approach for medical tomography. Specifically, we have modified the standard backprojection method commonly used in x-ray tomographic imaging to include the effects of both the diffusion and the scattering of light and the associated nonlinearities in projection image formation. These modifications are based primarily on the deconvolution of the broadened image by a spatially variant point-spread function that is dependent on the scattering of light in tissue. The spatial dependence of the deconvolution and nonlinearity corrections for the curved propagating ray paths in heterogeneous tissue are handled semiempirically by coordinate transformations. We have applied this method to both theoretical and experimental projections taken by parallel- and fan-beam tomography geometries. The experimental objects were biomedical phantoms with multiple objects, including in vitro animal tissue. The overall results presented demonstrate that image-resolution improvements by nearly an order of magnitude can be obtained. We believe that the tomographic method presented here can provide a basis for rapid, real-time medical monitoring by the use of optical projections. It is expected that such optical tomography techniques can be combined with the optical tissue diagnosis methods based on spectroscopic molecular signatures to result in a versatile optical diagnosis and imaging technology.
Collapse
|