1
|
Biscaldi T, L'Huillier R, Milot L, N'Djin WA. Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1588-1605. [PMID: 39259638 DOI: 10.1109/tuffc.2024.3458067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Current interstitial techniques of tumor ablation face challenges that ultrasound (US) technologies could meet. The ablation radius and directionality of the US beam could improve the efficiency and precision. Here, a nine-gauge magnetic resonance (MR)-compatible dual-mode US catheter prototype was experimentally evaluated for ultrasound image-guided high-intensity focused ultrasound (USgHIFU) conformal ablations. The prototype consisted of 64 piezocomposite linear-array elements and was driven by an open research programmable dual-mode US platform. After verifying the US image guidance capabilities of the prototype, the high-intensity focused US (HIFU) output performances (dynamic focusing and HIFU intensities) were quantitatively characterized, together with the associated 3-D HIFU-induced thermal heating in tissue phantoms [using MR thermometry (MRT)]. Finally, the ability to produce robustly HIFU-induced thermal ablations in in vitro liver was studied experimentally and compared to numerical modeling. Investigations of several HIFU dynamic focusing allowed overcoming the challenges of miniaturizing the device: monofocal focusing maximized deep energy deposition, while multifocal strategies eliminated grating lobes. The linear-array design of the prototype made it possible to produce interstitial US images of tissue and tumor mimics in situ. Multifocal pressure fields were generated without grating lobes and transducer surface intensities reached up to . Seventeen elementary thermal ablations were performed in vitro. Rotation of the catheter proved the directionality of ablation, sparing nontargeted tissue. This experimental proof of concept demonstrates the feasibility of treating volumes comparable to those of primary solid tumors with a miniaturized USgHIFU catheter whose dimensions are close to those of tools traditionally used in interventional radiology while offering new functionalities.
Collapse
|
2
|
Richards N, Christensen D, Hillyard J, Kline M, Johnson S, Odéen H, Payne A. Evaluation of acoustic-thermal simulations of in vivo magnetic resonance guided focused ultrasound ablative therapy. Int J Hyperthermia 2024; 41:2301489. [PMID: 38234019 PMCID: PMC10903184 DOI: 10.1080/02656736.2023.2301489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE To evaluate numerical simulations of focused ultrasound (FUS) with a rabbit model, comparing simulated heating characteristics with magnetic resonance temperature imaging (MRTI) data collected during in vivo treatment. METHODS A rabbit model was treated with FUS sonications in the biceps femoris with 3D MRTI collected. Acoustic and thermal properties of the rabbit muscle were determined experimentally. Numerical models of the rabbits were created, and tissue-type-specific properties were assigned. FUS simulations were performed using both the hybrid angular spectrum (HAS) method and k-Wave. Simulated power deposition patterns were converted to temperature maps using a Pennes' bioheat equation-based thermal solver. Agreement of pressure between the simulation techniques and temperature between the simulation and experimental heating was evaluated. Contributions of scattering and absorption attenuation were considered. RESULTS Simulated peak pressures derived using the HAS method exceeded the simulated peak pressures from k-Wave by 1.6 ± 2.7%. The location and FWHM of the peak pressure calculated from HAS and k-Wave showed good agreement. When muscle acoustic absorption value in the simulations was adjusted to approximately 54% of the measured attenuation, the average root-mean-squared error between simulated and experimental spatial-average temperature profiles was 0.046 ± 0.019 °C/W. Mean distance between simulated and experimental COTMs was 3.25 ± 1.37 mm. Transverse FWHMs of simulated sonications were smaller than in in vivo sonications. Longitudinal FWHMs were similar. CONCLUSIONS Presented results demonstrate agreement between HAS and k-Wave simulations and that FUS simulations can accurately predict focal position and heating for in vivo applications in soft tissue.
Collapse
Affiliation(s)
- Nicholas Richards
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
| | - Douglas Christensen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, 84132, USA
| | - Joshua Hillyard
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
| | - Michelle Kline
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Sara Johnson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|
3
|
Williams RP, Karzova MM, Yuldashev PV, Kaloev AZ, Nartov FA, Khokhlova VA, Cunitz BW, Morrison KP, Khokhlova TD. Dual-Mode 1-D Linear Ultrasound Array for Image-Guided Drug Delivery Enhancement Without Ultrasound Contrast Agents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:693-707. [PMID: 37074881 PMCID: PMC10712801 DOI: 10.1109/tuffc.2023.3268603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pulsed high-intensity focused ultrasound (pHIFU) uses nonlinearly distorted millisecond-long ultrasound pulses of moderate intensity to induce inertial cavitation in tissue without administration of contrast agents. The resulting mechanical disruption permeabilizes the tissue and enhances the diffusion of systemically administered drugs. This is especially beneficial for tissues with poor perfusion such as pancreatic tumors. Here, we characterize the performance of a dual-mode ultrasound array designed for image-guided pHIFU therapies in producing inertial cavitation and ultrasound imaging. The 64-element linear array (1.071 MHz, an aperture of 14.8×51.2 mm, and a pitch of 0.8 mm) with an elevational focal length of 50 mm was driven by the Verasonics V-1 ultrasound system with extended burst option. The attainable focal pressures and electronic steering range in linear and nonlinear operating regimes (relevant to pHIFU treatments) were characterized through hydrophone measurements, acoustic holography, and numerical simulations. The steering range at ±10% from the nominal focal pressure was found to be ±6 mm axially and ±11 mm azimuthally. Focal waveforms with shock fronts of up to 45 MPa and peak negative pressures up to 9 MPa were achieved at focusing distances of 38-75 mm from the array. Cavitation behaviors induced by isolated 1-ms pHIFU pulses in optically transparent agarose gel phantoms were observed by high-speed photography across a range of excitation amplitudes and focal distances. For all focusing configurations, the appearance of sparse, stationary cavitation bubbles occurred at the same P- threshold of 2 MPa. As the output level increased, a qualitative change in cavitation behavior occurred, to pairs and sets of proliferating bubbles. The pressure P- at which this transition was observed corresponded to substantial nonlinear distortion and shock formation in the focal region and was thus dependent on the focal distance of the beam ranging within 3-4 MPa for azimuthal F -numbers of 0.74-1.5. The array was capable of B-mode imaging at 1.5 MHz of centimeter-sized targets in phantoms and in vivo pig tissues at depths of 3-7 cm, relevant to pHIFU applications in abdominal targets.
Collapse
|
4
|
Saharkhiz N, Kamimura HAS, Konofagou EE. An Efficient and Multi-Focal Focused Ultrasound Technique for Harmonic Motion Imaging. IEEE Trans Biomed Eng 2023; 70:1150-1161. [PMID: 36191094 PMCID: PMC10067540 DOI: 10.1109/tbme.2022.3211465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Harmonic motion imaging (HMI) is an ultrasound-based elasticity imaging technique that utilizes oscillatory acoustic radiation force to estimate the mechanical properties of tissues, as well as monitor high-intensity focused ultrasound (HIFU) treatment. Conventionally, in HMI, a focused ultrasound (FUS) transducer generates oscillatory tissue displacements, and an imaging transducer acquires channel data for displacement estimation, with each transducer being driven with a separate system. The fixed position of the FUS focal spot requires mechanical translation of the transducers, which can be a time-consuming and challenging procedure. In this study, we developed and characterized a new HMI system with a multi-element FUS transducer with the capability of electronic focal steering of ±5 mm and ±2 mm from the geometric focus in the axial and lateral directions, respectively. A pulse sequence was developed to drive both the FUS and imaging transducers using a single ultrasound data acquisition (DAQ) system. The setup was validated on a tissue-mimicking phantom with embedded inclusions. Integrating beam steering with the mechanical translation of the transducers resulted in a consistent high contrast-to-noise ratio (CNR) for the inclusions with Young's moduli of 22 and 44 kPa within a 5-kPa background while the data acquisition speed is increased by 4.5-5.2-fold compared to the case when only mechanical movements were applied. The feasibility of simultaneous generation of multiple foci and tracking the induced displacements is demonstrated in phantoms for applications where imaging or treatment of a larger region is needed. Moreover, preliminary feasibility is shown in a human subject with a breast tumor, where the mean HMI displacement within the tumor was about 4 times lower than that within perilesional tissues. The proposed HMI system facilitates data acquisition in terms of flexibility and speed and can be potentially used in the clinic for breast cancer imaging and treatment.
Collapse
|
5
|
Zubair M, Adams MS, Diederich CJ. An endoluminal cylindrical sectored-ring ultrasound phased-array applicator for minimally-invasive therapeutic ultrasound. Med Phys 2023; 50:1-19. [PMID: 36413363 PMCID: PMC9870260 DOI: 10.1002/mp.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The size of catheter-based ultrasound devices for delivering ultrasound energy to deep-seated tumors is constrained by the access pathway which limits their therapeutic capabilities. PURPOSE To devise and investigate a deployable applicator suitable for minimally-invasive delivery of therapeutic ultrasound, consisting of a 2D cylindrical sectored-ring ultrasound phased array, integrated within an expandable paraboloid-shaped balloon-based reflector. The balloon can be collapsed for compact delivery and expanded close to the target position to mimic a larger-diameter concentric-ring sector-vortex array for enhanced dynamic control of focal depth and volume. METHODS Acoustic and biothermal simulations were employed in 3D generalized homogeneous and patient-specific heterogeneous models, for three-phased array transducers with 32, 64, and 128 elements, composed of sectored 4, 8, and 16 tubular ring transducers, respectively. The applicator performance was characterized as a function of array configuration, focal depth, phasing modes, and balloon reflector geometry. A 16-element proof-of-concept phased array applicator assembly, consisting of four tubular transducers each divided into four sectors, was fabricated, and characterized with hydrophone measurements along and across the axis, and ablations in ex vivo tissue. RESULTS Simulation results indicated that transducer arrays (1.5 MHz, 9 mm OD × 20 mm long), balloon sizes (41-50 mm expanded diameter, 20-60 mm focal depth), phasing mode (0-4) and sonication duration (30 s) can produce spatially localized acoustic intensity focal patterns (focal length: 3-22 mm, focal width: 0.7-8.7 mm) and ablative thermal lesions (width: 2.7-16 mm, length: 6-46 mm) in pancreatic tissue across a 10-90 mm focal depth range. Patient-specific studies indicated that 0.1, 0.46, and 1.2 cm3 volume of tumor can be ablated in the body of the pancreas for 120 s sonications using a single axial focus (Mode 0), or four, and eight simultaneous foci in a toroidal pattern (Mode 2 and 4, respectively). Hydrophone measurements demonstrated good agreement with simulation. Experiments in which chicken meat was thermally ablated indicated that volumetric ablation can be produced using single or multiple foci. CONCLUSIONS The results of this study demonstrated the feasibility of a novel compact ultrasound applicator design capable of focusing, deep penetration, electronic steering, and volumetric thermal ablation. The proposed applicator can be used for compact endoluminal or laparoscopic delivery of localized ultrasound energy to deep-seated targets.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology University of California San Francisco USA
| | - Matthew S. Adams
- Department of Radiation Oncology University of California San Francisco USA
| | - Chris J. Diederich
- Department of Radiation Oncology University of California San Francisco USA
| |
Collapse
|
6
|
Simulation of the Sub-Wavelength Focusing Capability of Cylindrical Concave Phased Array. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
8
|
Zhang Q, Mao J, Zhang Y, Lu M, Li R, Liu X, Liu Y, Yang R, Wang X, Geng Y, Qi T, Wan M. Multiple-Focus Patterns of Sparse Random Array Using Particle Swarm Optimization for Ultrasound Surgery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:565-579. [PMID: 34757903 DOI: 10.1109/tuffc.2021.3127222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aims to investigate the feasibility and potential of sparse random arrays driven by the particle swarm optimization (PSO) algorithm to generate multiple-focus patterns and a large scanning range without grating lobes, which extends the scanning range of focused ultrasound in the treatment of brain tumors, opening the blood-brain barrier, and neuromodulation. Operating at 1.1 MHz, a random spherical array with 200 square elements (sparseness 58%) and a sparse random array with 660 square elements (sparseness 41%) driven by PSO are employed to simulate different focus patterns. With the same radius of curvature and diameter of transducer and element size, the scanning range of the off-axis single focus of a random 200-element array is two times that of an ordinary array using symmetric arrangement. The focal volume of multiple-focus patterns of the random array is 18 times that of the single focus. The single focus of the sparse random array with 660 elements could steer up to ±23 mm in the radial direction, without grating lobes. The maximum distance between two foci in a multiple-focus "S"-shaped deflection is approximately 25 mm. Simulation results illustrate the capability of a focused beam steered in 3-D space. Multiple-focus patterns could significantly increase the focal volume and shorten the treatment time for large target volumes. Simulation results show the feasibility and potential of the method combining PSO with a sparse random array to generate flexible focus patterns that can adapt to different needs in different tissue treatments.
Collapse
|
9
|
Jones RM, Caskey CF, Dayton PA, Oralkan O, Pinton GF. Transcranial Neuromodulation Array With Imaging Aperture for Simultaneous Multifocus Stimulation in Nonhuman Primates. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:261-272. [PMID: 34460372 DOI: 10.1109/tuffc.2021.3108448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Even simple behaviors arise from the simultaneous activation of multiple regions in the brain. Thus, the ability to simultaneously stimulate multiple regions within a brain circuit should allow for better modulation of function. However, performing simultaneous multifocus ultrasound neuromodulation introduces challenges to transducer design. Using 3-D Fullwave simulations, we have designed an ultrasound neuromodulation array for nonhuman primates that: 1) can simultaneously focus on multiple targets and 2) include an imaging aperture for additional functional imaging. This design is based on a spherical array, with 128 15-mm elements distributed in a spherical helix pattern. It is shown that clustering the elements tightly around the 65-mm imaging aperture located at the top of the array improves targeting at shallow depths, near the skull surface. Spherical arrays have good focusing capabilities through the skull at the center of the array, but focusing on off-center locations is more challenging due to the natural geometric configuration and the angle of incidence with the skull. In order to mitigate this, the 64 elements closest to the aperture were rotated toward and focusing on a shallow target, and the 64 elements farthest from the aperture were rotated toward and focusing on a deeper target. Data illustrated that this array produced focusing on the somatosensory cortex with a gain of 4.38 and to the thalamus with a gain of 3.82. To improve upon this, the array placement was optimized based on phase aberration simulations, allowing for the elements with the largest impact on the gain at each focal point to be found. This optimization resulted in an array design that can focus on the somatosensory cortex with a gain of 5.19 and the thalamus with a gain of 4.45. Simulations were also performed to evaluate the ability of the array to focus on 28 additional brain regions, showing that off-center target regions can be stimulated, but those closer to the skull will require corrective steps to deliver the same amount of energy to those locations. This simulation and design process can be adapted to an individual monkey or human skull morphologies and specific target locations within individuals by using orientable 3-D printing of the transducer case and by electronic phase aberration correction.
Collapse
|
10
|
Groth SP, Gélat P, Haqshenas SR, Saffari N, van 't Wout E, Betcke T, Wells GN. Accelerating frequency-domain numerical methods for weakly nonlinear focused ultrasound using nested meshes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:441. [PMID: 34340504 DOI: 10.1121/10.0005655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The numerical simulation of weakly nonlinear ultrasound is important in treatment planning for focused ultrasound (FUS) therapies. However, the large domain sizes and generation of higher harmonics at the focus make these problems extremely computationally demanding. Numerical methods typically employ a uniform mesh fine enough to resolve the highest harmonic present in the problem, leading to a very large number of degrees of freedom. This paper proposes a more efficient strategy in which each harmonic is approximated on a separate mesh, the size of which is proportional to the wavelength of the harmonic. The increase in resolution required to resolve a smaller wavelength is balanced by a reduction in the domain size. This nested meshing is feasible owing to the increasingly localised nature of higher harmonics near the focus. Numerical experiments are performed for FUS transducers in homogeneous media to determine the size of the meshes required to accurately represent the harmonics. In particular, a fast volume potential approach is proposed and employed to perform convergence experiments as the computation domain size is modified. This approach allows each harmonic to be computed via the evaluation of an integral over the domain. Discretising this integral using the midpoint rule allows the computations to be performed rapidly with the FFT. It is shown that at least an order of magnitude reduction in memory consumption and computation time can be achieved with nested meshing. Finally, it is demonstrated how to generalise this approach to inhomogeneous propagation domains.
Collapse
Affiliation(s)
- Samuel P Groth
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Pierre Gélat
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Seyyed R Haqshenas
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Nader Saffari
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Elwin van 't Wout
- Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Timo Betcke
- Department of Mathematics, University College London, London WC1H 0AY, United Kingdom
| | - Garth N Wells
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
11
|
Bawiec CR, Khokhlova TD, Sapozhnikov OA, Rosnitskiy PB, Cunitz BW, Ghanem MA, Hunter C, Kreider W, Schade GR, Yuldashev PV, Khokhlova VA. A Prototype Therapy System for Boiling Histotripsy in Abdominal Targets Based on a 256-Element Spiral Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1496-1510. [PMID: 33156788 PMCID: PMC8191454 DOI: 10.1109/tuffc.2020.3036580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Boiling histotripsy (BH) uses millisecond-long ultrasound (US) pulses with high-amplitude shocks to mechanically fractionate tissue with potential for real-time lesion monitoring by US imaging. For BH treatments of abdominal organs, a high-power multielement phased array system capable of electronic focus steering and aberration correction for body wall inhomogeneities is needed. In this work, a preclinical BH system was built comprising a custom 256-element 1.5-MHz phased array (Imasonic, Besançon, France) with a central opening for mounting an imaging probe. The array was electronically matched to a Verasonics research US system with a 1.2-kW external power source. Driving electronics and software of the system were modified to provide a pulse average acoustic power of 2.2 kW sustained for 10 ms with a 1-2-Hz repetition rate for delivering BH exposures. System performance was characterized by hydrophone measurements in water combined with nonlinear wave simulations based on the Westervelt equation. Fully developed shocks of 100-MPa amplitude are formed at the focus at 275-W acoustic power. Electronic steering capabilities of the array were evaluated for shock-producing conditions to determine power compensation strategies that equalize BH exposures at multiple focal locations across the planned treatment volume. The system was used to produce continuous volumetric BH lesions in ex vivo bovine liver with 1-mm focus spacing, 10-ms pulselength, five pulses/focus, and 1% duty cycle.
Collapse
|
12
|
Zubair M, Dickinson R. Calculating the Effect of Ribs on the Focus Quality of a Therapeutic Spherical Random Phased Array. SENSORS 2021; 21:s21041211. [PMID: 33572208 PMCID: PMC7915479 DOI: 10.3390/s21041211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/03/2023]
Abstract
The overlaying rib cage is a major hindrance in treating liver tumors with high intensity focused ultrasound (HIFU). The problems caused are overheating of the ribs due to its high ultrasonic absorption capability and degradation of the ultrasound intensity distribution in the target plane. In this work, a correction method based on binarized apodization and geometric ray tracing approach was employed to avoid heating the ribs. A detailed calculation of the intensity distribution in the focus plane was undertaken to quantify and avoid the effect on HIFU beam generated by a 1-MHz 256-element random phased array after the ultrasonic beam passes through the rib cage. Focusing through the ribs was simulated for 18 different idealized ribs-array configurations and 10 anatomically correct ribs-array configurations, to show the effect of width of the ribs, intercostal spacing and the relative position of ribs and array on the quality of focus, and to identify the positions that are more effective for HIFU applications in the presence of ribs. Acoustic simulations showed that for a single focus without beam steering and for the same total acoustic power, the peak intensity at the target varies from a minimum of 211 W/cm2 to a maximum of 293 W/cm2 for a nominal acoustic input power of 15 W, whereas the side lobe level varies from 0.07 Ipeak to 0.28 Ipeak and the separation between the main lobe and side lobes varies from 2.5 mm to 6.3 mm, depending on the relative positioning of the array and ribs and the beam alignment. An increase in the side lobe level was observed by increasing the distance between the array and the ribs. The parameters of focus splitting and the deterioration of focus quality caused by the ultrasonic propagation through the ribs were quantified in various possible different clinical scenarios. In addition to idealized rib topology, anatomical realistic ribs were used to determine the focus quality of the HIFU beam when the beam is steered both in axial and transverse directions and when the transducer is positioned at different depths from the rib cage.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology, University of California, San Francisco, CA 90007, USA
- Correspondence:
| | - Robert Dickinson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
| |
Collapse
|
13
|
Zubair M, Dickinson RJ. 3D synthetic aperture imaging with a therapeutic spherical random phased array for transcostal applications. Phys Med Biol 2021; 66:035024. [PMID: 33276351 DOI: 10.1088/1361-6560/abd0d0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Experimental validation of a synthetic aperture imaging technique using a therapeutic random phased array is described, demonstrating the dual nature of imaging and therapy of such an array. The transducer is capable of generating both continuous wave high intensity beams for ablating the tumor and low intensity ultrasound pulses to image the target area. Pulse-echo data is collected from the elements of the phased array to obtain B-mode images of the targets. Since therapeutic arrays are optimized for therapy only with concave apertures having low f-number and large directive elements often coarsely sampled, imaging can not be performed using conventional beamforming. We show that synthetic aperture imaging is capable of processing the acquired RF data to obtain images of the field of interest. Simulations were performed to compare different synthetic aperture imaging techniques to identify the best algorithm in terms of spatial resolution. Experimental validation was performed using a 1 MHz, 256-elements, spherical random phased array with 130 mm radius of curvature. The array was integrated with a research ultrasound scanner via custom connectors to acquire raw RF data for variety of targets. Imaging was implemented using synthetic aperture beamforming to produce images of a rib phantom and ex vivo ribs. The array was shown to resolve spherical targets within ±15 mm of either side of the axis in the focal plane and obtain 3D images of the rib phantom up to ±40 mm of either side of the central axis and at a depth of 3-9 cm from the array surface. The lateral and axial full width half maximum was 1.15 mm and 2.75 mm, respectively. This study was undertaken to emphasize that both therapy and image guidance with a therapeutic random phased array is possible and such a system has the potential to address some major limitations in the existing high intensity focused ultrasound (HIFU) systems. The 3D images obtained with a therapeutic array can be used to identify and locate strong scattering objects aiding to image guidance and treatment planning of the HIFU procedure.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Bioengineering, Imperial College London, United Kingdom
| | | |
Collapse
|
14
|
Qu X, Shen G, Wu N, Wu H, Qiao S, Wang E, Chen Y, Wang H. Suppressing Grating Lobes for Transcranial Focused Ultrasound System by Frequency-Modulated Excitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:341-351. [PMID: 33382650 DOI: 10.1109/tuffc.2020.3047664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transcranial focused ultrasound is a novel noninvasive therapeutic modality for glioblastoma and other disorders of the brain. However, because the phase aberrations caused by the skull need to be corrected with computed tomography (CT) images, the transcranial transducer is tightly fixed on the patient's head to avoid any variation in the relative position, and the focus shifting relies mainly on the capacity for electronic beam steering. Due to the presence of grating lobes and the rapid degradation of the focus quality with increasing focus-shifting distance, transcranial focus-shifting sonication may damage healthy brain tissue unintentionally. To reduce the risks associated with transcranial focused ultrasound therapy, linear frequency-modulated (FM) excitation is proposed. The k-space corrected pseudospectral time domain (PSTD) and acoustic holography approach based on the Rayleigh integral are combined to calculate the distribution of the deposited acoustic power. The corresponding simulation was performed with axial/lateral focus shifting at different distances. The distributions of the deposited acoustic power show that linear FM excitation can effectively suppress undesired prefocal grating lobes without compromising focus quality.
Collapse
|
15
|
Estrada H, Ozbek A, Robin J, Shoham S, Razansky D. Spherical Array System for High-Precision Transcranial Ultrasound Stimulation and Optoacoustic Imaging in Rodents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:107-115. [PMID: 32406833 PMCID: PMC7952015 DOI: 10.1109/tuffc.2020.2994877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound can be delivered transcranially to ablate brain tissue, open the blood-brain barrier, or affect neural activity. Transcranial focused ultrasound in small rodents is typically done with low-frequency single-element transducers, which results in unspecific targeting and impedes the concurrent use of fast neuroimaging methods. In this article, we devised a wide-angle spherical array bidirectional interface for high-resolution parallelized optoacoustic imaging and transcranial ultrasound (POTUS) delivery in the same target regions. The system operates between 3 and 9 MHz, allowing to generate and steer focal spots with widths down to [Formula: see text] across a field of view covering the entire mouse brain, while the same array is used to capture high-resolution 3-D optoacoustic data in real time. We showcase the system's versatile beam-forming capacities as well as volumetric optoacoustic imaging capabilities and discuss its potential to noninvasively monitor brain activity and various effects of ultrasound emission.
Collapse
|
16
|
Zhou Y. The Effects of Phase-Modulated Excitation on the Focused Acoustic Field. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:727-734. [PMID: 31794390 DOI: 10.1109/tuffc.2019.2955453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various modulation approaches, such as amplitude and frequency modulations, have been applied widely to modify the acoustic field and improve the performance of ultrasound imaging and therapy. However, phase modulation (PM) has not been investigated extensively in the ultrasound applications, especially at a long-pulse duration. In this study, the effects of PM on the acoustic field were investigated. The radiated acoustic pressure waveforms produced using different PM strategies (i.e., sequential phase inversion every cycle, every two cycles, and random phase inversion) were explored, and the distributions of acoustic pressure and average acoustic intensity along and transverse to the transducer axis were compared with those of a sinusoidal wave excitation in both measurement and simulation. It is found that the phase inversion between the modulated signals is not clearly seen in the radiated waveform because of the limited fractional bandwidth of the therapeutic ultrasound transducer. As a result, the radiated waveform has a higher oscillating frequency, and the pressure at the focus and the -6-dB beam size are decreased. Both simulation and measurement show similar trends. Furthermore, produced acoustic fields of the phased array using these PM strategies were also simulated at the varied lateral and axial focus shifting distances. The magnitude and beam size of both the main lobe and grating lobe are found between them, especially at the large focus shifting. In summary, the acoustic field is dependent on the PM, and the appropriate excitation scheme could improve the ultrasound application.
Collapse
|
17
|
Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, Gavrilov LR, Khokhlova VA. Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1786. [PMID: 31590513 PMCID: PMC7064313 DOI: 10.1121/1.5126685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/23/2019] [Accepted: 08/28/2019] [Indexed: 05/21/2023]
Abstract
Multi-element high-intensity focused ultrasound phased arrays in the shape of hemispheres are currently used in clinics for thermal lesioning in deep brain structures. Certain side effects of overheating non-targeted tissues and skull bones have been revealed. Here, an approach is developed to mitigate these effects. A specific design of a fully populated 256-element 1-MHz array shaped as a spherical segment (F-number, F# = 1) and filled by randomly distributed equal-area polygonal elements is proposed. Capability of the array to generate high-amplitude shock fronts at the focus is tested in simulations by combining three numerical algorithms for linear and nonlinear field modeling and aberration correction. The algorithms are based on the combination of the Rayleigh integral, a linear pseudo-spectral time domain Kelvin-Voigt model, and nonlinear Westervelt model to account for the effects of inhomogeneities, aberrations, reflections, absorption, nonlinearity, and shear waves in the skull. It is shown that the proposed array can generate nonlinear waveforms with shock amplitudes >60 MPa at the focus deep inside the brain without exceeding the existing technical limitation on the intensity of 40 W/cm2 at the array elements. Such shock amplitudes are sufficient for mechanical ablation of brain tissues using the boiling histotripsy approach and implementation of other shock-based therapies.
Collapse
Affiliation(s)
- Pavel B Rosnitskiy
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Petr V Yuldashev
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Oleg A Sapozhnikov
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Leonid R Gavrilov
- Andreyev Acoustics Institute, Russian Federation, Moscow 117036, Russia
| | - Vera A Khokhlova
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
18
|
Lean HQ, Zhou Y. Acoustic Field of Phased-Array Ultrasound Transducer with the Focus/Foci Shifting. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00464-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Wilson AJ. Towards using a focussed phased array of millimetre length scale elements for ultrasound imaging. Phys Med Biol 2018; 63:145009. [PMID: 29926810 DOI: 10.1088/1361-6560/aace07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sparse phased array ultrasound transducers with millimetre length scale elements have previously been proposed for generating hyperthermia but not for imaging. Numerical simulation with a pseudospectral solver was used to investigate: (a) how the position of the maximum pressure in the focal region changed with element diameter and frequency; (b) how the size and position of the focal region changed with focal distance under steering; and (c) the imaging performance of 15 element random arrays. These analyses were performed for both piston-like and non piston-like millimetre diameter elements since previous work has shown a shift in the distance to the maximum pressure in the focal region with the latter. The results for these elements were compared with elements where the diameter was <λ/2. The distance from the array to the position of maximum pressure in the focal region diverged from the value with element diameter <λ/2; values for piston-like elements increased positively whilst values for non piston-like elements increased negatively. With distances expressed in λ, no difference was found for arrays at 1 MHz and 2.5 MHz. For piston-like elements, but not for non piston-like elements, two peaks were found in the focal region which were in-line with the direction of propagation for a focus on the central axis but which rotated to become parallel with the direction of propagation when steering exceeded 20°. The size and position of the focal region under steering was similar for the non piston-like elements and elements with diameter <λ/2. Little difference was found in image quality or the size of the point spread function (PSF) between images at 2.5 MHz with piston-like and non piston-like behaviour for steering angles less than 20° when compared with a linear array of similar size. These results suggest that imaging with random arrays of millimetre length scale elements is possible.
Collapse
Affiliation(s)
- A J Wilson
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom. Department of Research and Development, University Hospital, Coventry CV2 2DX, United Kingdom
| |
Collapse
|
20
|
Chaplin V, Phipps MA, Caskey CF. A random phased-array for MR-guided transcranial ultrasound neuromodulation in non-human primates. Phys Med Biol 2018; 63:105016. [PMID: 29667598 PMCID: PMC6941739 DOI: 10.1088/1361-6560/aabeff] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcranial focused ultrasound (FUS) is a non-invasive technique for therapy and study of brain neural activation. Here we report on the design and characterization of a new MR-guided FUS transducer for neuromodulation in non-human primates at 650 kHz. The array is randomized with 128 elements 6.6 mm in diameter, radius of curvature 7.2 cm, opening diameter 10.3 cm (focal ratio 0.7), and 46% coverage. Simulations were used to optimize transducer geometry with respect to focus size, grating lobes, and directivity. Focus size and grating lobes during electronic steering were quantified using hydrophone measurements in water and a three-axis stage. A novel combination of optical tracking and acoustic mapping enabled measurement of the 3D pressure distribution in the cortical region of an ex vivo skull to within ~3.5 mm of the surface, and allowed accurate modelling of the experiment via non-homogeneous 3D acoustic simulations. The data demonstrates acoustic focusing beyond the skull bone, with the focus slightly broadened and shifted proximal to the skull. The fabricated design is capable of targeting regions within the S1 sensorimotor cortex of macaques.
Collapse
Affiliation(s)
- Vandiver Chaplin
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232
| | - Marshal A. Phipps
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232
| | - Charles F. Caskey
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232
| |
Collapse
|
21
|
Rosnitskiy PB, Vysokanov BA, Gavrilov LR, Sapozhnikov OA, Khokhlova VA. Method for Designing Multielement Fully Populated Random Phased Arrays for Ultrasound Surgery Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:630-637. [PMID: 29610092 PMCID: PMC5903437 DOI: 10.1109/tuffc.2018.2800160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Maximizing the power of multielement phased arrays is a critical factor for high-intensity focused ultrasound (HIFU) applications such as histotripsy and transcostal sonications. This can be achieved by a tight packing of the array elements. Good electronic focusing capabilities are also required. Currently used quasi-random arrays with a relatively low filling factor of about 60% have this focusing ability. Here, a novel method of designing random HIFU arrays with the maximum possible filling factor (100% if no gaps between elements needed in practice are introduced) and polygonal elements of equal area and slightly different shapes based on the capacity-constrained tessellation is described. The method is validated by comparing designs of two arrays with the same geometric and physical parameters: an existing 256-element array with a compact 16-spirals layout of circular elements and the proposed array with the maximum possible filling factor. Introduction of a 0.5-mm gap between the elements of the new array resulted in a reduction of its filling factor to 86%, as compared with 61% for the spiral array. It is shown that for the same intensity at the elements, the proposed array provides two times higher total power while maintaining the same electronic focusing capabilities as compared to the spiral one. Furthermore, the surface of the capacity-constrained tessellation array, its boundary, and a central opening can have arbitrary shapes.
Collapse
|
22
|
Han Y, Payen T, Wang S, Konofagou E. Focused Ultrasound Steering for Harmonic Motion Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:292-294. [PMID: 29424694 PMCID: PMC5832353 DOI: 10.1109/tuffc.2017.2781188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Harmonic motion imaging (HMI) is a radiation-force-based ultrasound elasticity imaging technique, which is designed for both tissue relative stiffness imaging and reliable high-intensity focused ultrasound treatment monitoring. The objective of this letter is to develop and demonstrate the feasibility of 2-D focused ultrasound (FUS) beam steering for HMI using a 93-element, FUS phased array. HMI with steered FUS beam was acquired in tissue-mimicking phantoms. The HMI displacement was imaged within the steering range of ±1.7 mm laterally and ±2 mm axially. Using the steered FUS beam, HMI can be used to image a larger tissue volume with higher efficiency and without requiring mechanical movement of the transducer.
Collapse
|
23
|
Wang M, Zhou Y. Numerical evaluation of the effect of electronically steering a phased array transducer: axially post-focal shifting. Int J Hyperthermia 2017; 33:758-769. [PMID: 28540816 DOI: 10.1080/02656736.2017.1309579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE HIFU has been emerging as an effective and safe modality for the treatment of solid tumours and cancers. The focus shifting range of phased array HIFU transducer is an important safety concern because of the presence of grating lobe in the pre-focal region. However, previous studies were only based on linear acoustic wave model. MATERIALS AND METHODS The nonlinear wave propagation from a 256-element phased array through multiple layered media was simulated using the angular spectrum approach (ASA) in marching fractional steps with the consideration of diffraction, attenuation and non-linearity effects by a second-order operator splitting scheme. The distribution of acoustic intensities, temperature elevations, lesion sizes and grating lobe levels were calculated at various axially post-focal shifting distances and driving frequencies. RESULTS Axially shifting HIFU focus leads to significant increase of the acoustic intensity at the grating lobe, but decrease at the main lobe. The influences on the acoustic field, thermal field and lesion sizes are determined by the shifting distance and driving frequency, and variations can be fit monotonically and linearly. Prediction accuracies by simple regression models are satisfactory. Irreversible tissue coagulation could be generated by the grating lobe at certain conditions. CONCLUSIONS The established nonlinear wave propagation algorithm allows the accurate description of HIFU field and consequently the evaluation of grating lobe and steerability of focus. The influence of focus shifting may be predicted simply. The treatment planning of phased array HIFU ablation could be optimised by setting the appropriate exposure and focus scanning schemes.
Collapse
Affiliation(s)
- Mingjun Wang
- a School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore
| | - Yufeng Zhou
- a School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore
| |
Collapse
|
24
|
Ramaekers P, de Greef M, Berriet R, Moonen CTW, Ries M. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral. Phys Med Biol 2017; 62:5021-5045. [DOI: 10.1088/1361-6560/aa716c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Liu J, Foiret J, Stephens DN, Le Baron O, Ferrara KW. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia. Phys Med Biol 2016; 61:5275-96. [PMID: 27353347 DOI: 10.1088/0031-9155/61/14/5275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the -3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and -8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Jingfei Liu
- Department of Biomedical Engineering, University of California, Davis, CA 95616-8686, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.
Collapse
Affiliation(s)
- Omer Naor
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology Haifa 32000, Israel. The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | | | | |
Collapse
|
27
|
van 't Wout E, Gélat P, Betcke T, Arridge S. A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2726-37. [PMID: 26627749 DOI: 10.1121/1.4932166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton-Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis.
Collapse
Affiliation(s)
- Elwin van 't Wout
- Department of Computer Science, University College London, London, United Kingdom
| | - Pierre Gélat
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Timo Betcke
- Department of Mathematics, University College London, London, United Kingdom
| | - Simon Arridge
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
28
|
Gavrilov LR, Sapozhnikov OA, Khokhlova VA. Spiral arrangement of elements of two-dimensional ultrasonic therapeutic arrays as a way of increasing the intensity at the focus. ACTA ACUST UNITED AC 2015. [DOI: 10.3103/s106287381510010x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Pajek D, Hynynen K. The application of sparse arrays in high frequency transcranial focused ultrasound therapy: a simulation study. Med Phys 2014; 40:122901. [PMID: 24320540 DOI: 10.1118/1.4829510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Transcranial focused ultrasound is an emerging therapeutic modality that can be used to perform noninvasive neurosurgical procedures. The current clinical transcranial phased array operates at 650 kHz, however the development of a higher frequency array would enable more precision, while reducing the risk of standing waves. However, the smaller wavelength and the skull's increased distortion at this frequency are problematic. It would require an order of magnitude more elements to create such an array. Random sparse arrays enable steering of a therapeutic array with fewer elements. However, the tradeoffs inherent in the use of sparsity in a transcranial phased array have not been systematically investigated and so the objective of this simulation study is to investigate the effect of sparsity on transcranial arrays at a frequency of 1.5 MHz that provides small focal spots for precise exposure control. METHODS Transcranial sonication simulations were conducted using a multilayer Rayleigh-Sommerfeld propagation model. Element size and element population were varied and the phased array's ability to steer was assessed. RESULTS The focal pressures decreased proportionally as elements were removed. However, off-focus hotspots were generated if a high degree of steering was attempted with very sparse arrays. A phased array consisting of 1588 elements 3 mm in size, a 10% population, was appropriate for steering up to 4 cm in all directions. However, a higher element population would be required if near-skull sonication is desired. CONCLUSIONS This study demonstrated that the development of a sparse, hemispherical array at 1.5 MHz could enable more precision in therapies that utilize lower intensity sonications.
Collapse
Affiliation(s)
- Daniel Pajek
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N3M5, Canada
| | | |
Collapse
|
30
|
Gélat P, Ter Haar G, Saffari N. A comparison of methods for focusing the field of a HIFU array transducer through human ribs. Phys Med Biol 2014; 59:3139-71. [PMID: 24861888 DOI: 10.1088/0031-9155/59/12/3139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A forward model, which predicts the scattering by human ribs of a multi-element high-intensity focused ultrasound transducer, was used to investigate the efficacy of a range of focusing approaches described in the literature. This forward model is based on the boundary element method and was described by Gélat et al (2011 Phys. Med. Biol. 56 5553-81; 2012 Phys. Med. Biol. 57 8471-97). The model has since been improved and features a complex surface impedance condition at the surface of the ribs. The inverse problem of focusing through the ribs was implemented on six transducer array-rib topologies and five methods of focusing were investigated, including spherical focusing, binarized apodization based on geometric ray tracing, phase conjugation and the decomposition of the time-reversal operator method. The excitation frequency was 1 MHz and the array was of spherical-section type. Both human and idealized rib topologies were considered. The merit of each method of focusing was examined. It was concluded that the constrained optimization approach offers greater potential than the other focusing methods in terms of maximizing the ratio of acoustic pressure magnitudes at the focus to those on the surface of the ribs whilst taking full advantage of the dynamic range of the phased array.
Collapse
Affiliation(s)
- P Gélat
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK. Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | |
Collapse
|
31
|
Gélat P, ter Haar G, Saffari N. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/457/1/012002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Qiao S, Shen G, Bai J, Chen Y. Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1503-1514. [PMID: 23927190 DOI: 10.1121/1.4812869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the high-intensity focused ultrasound treatment of liver tumors, ultrasound propagation is affected by the rib cage. Because of the diffraction and absorption of the bone, the sound distribution at the focal plane is altered, and more importantly, overheating on the rib surface might occur. To overcome these problems, a geometric correction method is applied to turn off the elements blocked by the ribs. The potential of steering the focus of the phased-array along the propagation direction to improve the transcostal treatment was investigated by simulations and experiments using different rib models and transducers. The ultrasound propagation through the ribs was computed by a hybrid method including the Rayleigh-Sommerfeld integral, k-space method, and angular spectrum method. A modified correction method was proposed to adjust the output of elements based on their relative area in the projected "shadow" of the ribs. The simulation results showed that an increase in the specific absorption rate gain up to 300% was obtained by varying the focal length although the optimal value varied in each situation. Therefore, acoustic simulation is required for each clinical case to determine a satisfactory treatment plan.
Collapse
Affiliation(s)
- Shan Qiao
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Jones RM, O'Reilly MA, Hynynen K. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study. Phys Med Biol 2013; 58:4981-5005. [PMID: 23807573 DOI: 10.1088/0031-9155/58/14/4981] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source's emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system's resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.
Collapse
Affiliation(s)
- Ryan M Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | | | | |
Collapse
|
34
|
Payne A, Merrill R, Minalga E, Vyas U, de Bever J, Todd N, Hadley R, Dumont E, Neumayer L, Christensen D, Roemer R, Parker D. Design and characterization of a laterally mounted phased-array transducer breast-specific MRgHIFU device with integrated 11-channel receiver array. Med Phys 2013; 39:1552-60. [PMID: 22380387 DOI: 10.1118/1.3685576] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work presents the design and preliminary evaluation of a new laterally mounted phased-array MRI-guided high-intensity focused ultrasound (MRgHIFU) system with an integrated 11-channel phased-array radio frequency (RF) coil intended for breast cancer treatment. The design goals for the system included the ability to treat the majority of tumor locations, to increase the MR image's signal-to-noise ratio (SNR) throughout the treatment volume and to provide adequate comfort for the patient. METHODS In order to treat the majority of the breast volume, the device was designed such that the treated breast is suspended in a 17-cm diameter treatment cylinder. A laterally shooting 1-MHz, 256-element phased-array ultrasound transducer with flexible positioning is mounted outside the treatment cylinder. This configuration achieves a reduced water volume to minimize RF coil loading effects, to position the coils closer to the breast for increased signal sensitivity, and to reduce the MR image noise associated with using water as the coupling fluid. This design uses an 11-channel phased-array RF coil that is placed on the outer surface of the cylinder surrounding the breast. Mechanical positioning of the transducer and electronic steering of the focal spot enable placement of the ultrasound focus at arbitrary locations throughout the suspended breast. The treatment platform allows the patient to lie prone in a face-down position. The system was tested for comfort with 18 normal volunteers and SNR capabilities in one normal volunteer and for heating accuracy and stability in homogeneous phantom and inhomogeneous ex vivo porcine tissue. RESULTS There was a 61% increase in mean relative SNR achieved in a homogeneous phantom using the 11-channel RF coil when compared to using only a single-loop coil around the chest wall. The repeatability of the system's energy delivery in a single location was excellent, with less than 3% variability between repeated temperature measurements at the same location. The execution of a continuously sonicated, predefined 48-point, 8-min trajectory path resulted in an ablation volume of 8.17 cm(3), with one standard deviation of 0.35 cm(3) between inhomogeneous ex vivo tissue samples. Comfort testing resulted in negligible side effects for all volunteers. CONCLUSIONS The initial results suggest that this new device will potentially be suitable for MRgHIFU treatment in a wide range of breast sizes and tumor locations.
Collapse
Affiliation(s)
- A Payne
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yuldashev PV, Shmeleva SM, Ilyin SA, Sapozhnikov OA, Gavrilov LR, Khokhlova VA. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array. Phys Med Biol 2013; 58:2537-59. [PMID: 23528338 DOI: 10.1088/0031-9155/58/8/2537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm(-2) in the free field in water and 40 W cm(-2) in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.
Collapse
|
36
|
Malietzis G, Monzon L, Hand J, Wasan H, Leen E, Abel M, Muhammad A, Price P, Abel P. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. Br J Radiol 2013; 86:20130044. [PMID: 23403455 DOI: 10.1259/bjr.20130044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) is a rapidly maturing technology with diverse clinical applications. In the field of oncology, the use of HIFU to non-invasively cause tissue necrosis in a defined target, a technique known as focused ultrasound surgery (FUS), has considerable potential for tumour ablation. In this article, we outline the development and underlying principles of HIFU, overview the limitations and commercially available equipment for FUS, then summarise some of the recent technological advances and experimental clinical trials that we predict will have a positive impact on extending the role of FUS in cancer therapy.
Collapse
Affiliation(s)
- G Malietzis
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gélat P, Ter Haar G, Saffari N. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen. Phys Med Biol 2012. [PMID: 23207408 DOI: 10.1088/0031-9155/57/24/8471] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach based on ray tracing and against the decomposition of the time-reversal operator (DORT). In both cases, the constrained optimization provided a superior ratio of focal peak pressure to maximum pressure magnitude on the surface of the ribs.
Collapse
Affiliation(s)
- P Gélat
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| | | | | |
Collapse
|
38
|
Qiao S, Shen G, Bai J, Chen Y. Effects of different parameters in the fast scanning method for HIFU treatment. Med Phys 2012; 39:5795-813. [PMID: 23039619 DOI: 10.1118/1.4748329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High-intensity focused ultrasound is a promising method for the noninvasive treatment of benign and malignant tumors. This study analyzes the effects of scanning path, applied power, and geometric characteristics of the transducer on ablation using fast scanning method, a new scanning method that uses high-intensity focused ultrasound at different blood perfusion levels. METHODS Two transducers, six scanning paths, and three focal patterns were used to examine the ablation results of the fast scanning method using power densities from 1.35 × 10(7) W∕m(3) to 4.5 × 10(7) W∕m(3) and blood perfusion rates from 2 × 10(-3) ml∕ml∕s to 16 × 10(-3) ml∕ml∕s. The Pennes equation was solved using the finite-difference time-domain method to simulate the heating procedure. RESULTS Based on the results of the fast-scanning method, the different scanning paths exhibited small effect on the total treatment time supported by both simulation and least-square fit. Similar-sized lesions can result from the five different repeated paths, whereas a random path may lead to relative large fluctuations in ablation volume because of asymmetry of the lesions. Higher power levels increase the lesion volume and decrease the treatment time required for ablating a target area using the fast scanning method, whereas increased blood perfusion has the opposite effect on ablation volume and treatment time. A symmetric lesion can be produced through fast scanning method using a 65-element and a 90-element transducer. However, lesion production using the same operation scheme differs between the two transducers. CONCLUSIONS Unlike traditional scanning methods, fast scanning method produces a planned lesion regardless of scanning path, as long as the path consists of repeated subsequences. This attribute makes fast scanning method an easy-operation scheme that produces relatively large symmetric lesions in homogeneous tissues. Applied power is the most important factor; however, high blood perfusion levels can limit or even hinder the full ablation of the target area. Therefore, tissue perfusion and transducer type should be given special attention to ensure the success and safety of ablation treatment.
Collapse
Affiliation(s)
- Shan Qiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Gélat P, ter Haar G, Saffari N. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs. Phys Med Biol 2011; 56:5553-81. [DOI: 10.1088/0031-9155/56/17/007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Auboiroux V, Dumont E, Petrusca L, Viallon M, Salomir R. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy. Phys Med Biol 2011; 56:3563-82. [PMID: 21606558 DOI: 10.1088/0031-9155/56/12/008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm(-2) CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.
Collapse
|
41
|
Shaw A, Khokhlova V, Bobkova S, Gavrilov L, Hand J. Calibration of HIFU intensity fields measured using an infra-red camera. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/279/1/012019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Yuldashev PV, Khokhlova VA. SIMULATION OF THREE-DIMENSIONAL NONLINEAR FIELDS OF ULTRASOUND THERAPEUTIC ARRAYS. ACOUSTICAL PHYSICS 2011; 57:334-343. [PMID: 21804751 PMCID: PMC3145364 DOI: 10.1134/s1063771011030213] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel numerical model was developed to simulate three-dimensional nonlinear fields generated by high intensity focused ultrasound (HIFU) arrays. The model is based on the solution to the Westervelt equation; the developed algorithm makes it possible to model nonlinear pressure fields of periodic waves in the presence of shock fronts localized near the focus. The role of nonlinear effects in a focused beam of a two-dimensional array was investigated in a numerical experiment in water. The array consisting of 256 elements and intensity range on the array elements of up to 10 W/cm(2) was considered. The results of simulations have shown that for characteristic intensity outputs of modern HIFU arrays, nonlinear effects play an important role and shock fronts develop in the pressure waveforms at the focus.
Collapse
|
43
|
Ji X, Shen GF, Bai JF, Li DH, Yu Y, Qiao S, Chen YZ. Multi-element ultrasound phased array applicator for the ablation of deep-seated tissue. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12204-011-1094-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
de Oliveira PL, de Senneville BD, Dragonu I, Moonen CTW. Rapid motion correction in MR-guided high-intensity focused ultrasound heating using real-time ultrasound echo information. NMR IN BIOMEDICINE 2010; 23:1103-1108. [PMID: 20669159 DOI: 10.1002/nbm.1526] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The objective of this study was to evaluate the feasibility of integrating real-time ultrasound echo guidance in MR-guided high-intensity focused ultrasound (HIFU) heating of mobile targets in order to reduce latency between displacement analysis and HIFU treatment. Experiments on a moving phantom were carried out with MRI-guided HIFU during continuous one-dimensional ultrasound echo detection using separate HIFU and ultrasound imaging transducers. Excellent correspondence was found between MR- and ultrasound-detected displacements. Real-time ultrasound echo-based target tracking during MR-guided HIFU heating is shown with the dimensions of the heated area similar to those obtained for a static target. This work demonstrates that the combination of the two modalities opens up perspectives for motion correction in MRI-guided HIFU with negligible latency.
Collapse
|
45
|
Khokhlova VA, Bobkova SM, Gavrilov LR. FOCUS SPLITTING ASSOCIATED WITH PROPAGATION OF FOCUSED ULTRASOUND THROUGH THE RIB CAGE. ACOUSTICAL PHYSICS 2010; 56:665-674. [PMID: 21607120 PMCID: PMC3098889 DOI: 10.1134/s106377101005012x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The effect of focus splitting after propagation of focused ultrasound through a rib cage is investigated theoretically. It is shown that the mechanism of this effect is caused by the interference of waves from two or more spatially separated sources, such as intercostal spaces. Analytical estimates of the parameters of splitting are obtained, i.e., the number of foci, their amplitudes, diameter, and the distance between them, depending on the transducer parameters, as well as the dimensions of the rib cage and position of ribs relative to the radiator. Various configurations of the relative positioning of ribs and radiator are considered; it is shown which of them are the most effective for real surgical operations.
Collapse
Affiliation(s)
- V. A. Khokhlova
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie gory, Moscow, 119991 Russia
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| | - S. M. Bobkova
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie gory, Moscow, 119991 Russia
| | - L. R. Gavrilov
- N. N. Andreev Acoustics Institute, Shvernika 4, Moscow, 117036 Russia
| |
Collapse
|
46
|
Bobkova S, Gavrilov L, Khokhlova V, Shaw A, Hand J, # |. Focusing of high-intensity ultrasound through the rib cage using a therapeutic random phased array. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:888-906. [PMID: 20510186 PMCID: PMC2879431 DOI: 10.1016/j.ultrasmedbio.2010.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 02/27/2010] [Accepted: 03/07/2010] [Indexed: 05/17/2023]
Abstract
A method for focusing high-intensity ultrasound (HIFU) through a rib cage that aims to minimize heating of the ribs while maintaining high intensities at the focus (or foci) was proposed and tested theoretically and experimentally. Two approaches, one based on geometric acoustics and the other accounting for diffraction effects associated with propagation through the rib cage, were investigated theoretically for idealized source conditions. It is shown that for an idealized radiator, the diffraction approach provides a 23% gain in peak intensity and results in significantly less power losses on the ribs (1% vs. 7.5% of the irradiated power) compared with the geometric one. A 2-D 1-MHz phased array with 254 randomly distributed elements, tissue-mimicking phantoms and samples of porcine rib cages are used in experiments; the geometric approach is used to configure how the array is driven. Intensity distributions are measured in the plane of the ribs and in the focal plane using an infrared camera. Theoretical and experimental results show that it is possible to provide adequate focusing through the ribs without overheating them for a single focus and several foci, including steering at +/- 10-15 mm off and +/- 20 mm along the array axis. Focus splitting caused by the periodic spatial structure of ribs is demonstrated both in simulations and experiments; the parameters of splitting are quantified. The ability to produce thermal lesions with a split focal pattern in ex vivo porcine tissue placed beyond the rib phantom is also demonstrated. The results suggest that the method is potentially useful for clinical applications of HIFU, for which the rib cage lies between the transducer(s) and the targeted tissue.
Collapse
Affiliation(s)
- Svetlana Bobkova
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | | | - Vera Khokhlova
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
- Center for Industrial and Medical Ultrasound, APL, University of Washington, Seattle 98105, USA
| | - Adam Shaw
- Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington TW11 0LW, UK
| | | | | |
Collapse
|
47
|
Sarvazyan A, Fillinger L, Gavrilov L. Time-reversal acoustic focusing system as a virtual random phased array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:812-817. [PMID: 20378444 DOI: 10.1109/tuffc.2010.1486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper compares the performance of two different systems for dynamic focusing of ultrasonic waves: conventional 2-D phased arrays (PA) and a focusing system based on the principles of time-reversed acoustics (TRA). Focused ultrasound fields obtained in the experiments with the TRA focusing system (TRA FS), which employs a liquid-filled reverberator with 4 piezotransducers attached to its wall, are compared with the focused fields obtained by mathematical simulation of PAs comprised from several tens to several hundreds of elements distributed randomly on the array surface. The experimental and simulated focusing systems had the same aperture and operated at a frequency centered about 600 kHz. Experimental results demonstrated that the TRA FS with a small number of channels can produce complex focused patterns and can steer them with efficiency comparable to that of a PA with hundreds of elements. It is shown that the TRA FS can be realized using an extremely simple means, such as a reverberator made of a water-filled plastic bottle with just a few piezotransducers attached to its walls.
Collapse
|
48
|
Ji X, Bai JF, Shen GF, Chen YZ. High-intensity focused ultrasound with large scale spherical phased array for the ablation of deep tumors. J Zhejiang Univ Sci B 2009; 10:639-47. [PMID: 19735096 DOI: 10.1631/jzus.b0920130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Under some circumstances surgical resection is feasible in a low percentage for the treatment of deep tumors. Nevertheless, high-intensity focused ultrasound (HIFU) is beginning to offer a potential noninvasive alternative to conventional therapies for the treatment of deep tumors. In our previous study, a large scale spherical HIFU-phased array was developed to ablate deep tumors. In the current study, taking into account the required focal depth and maximum acoustic power output, 90 identical circular PZT-8 elements (diameter =1.4 cm and frequency=1 MHz) were mounted on a spherical shell with a radius of curvature of 18 cm and a diameter of 21 cm. With the developed array, computer simulations and ex vivo experiments were carried out. The simulation results theoretically demonstrate the ability of the array to focus and steer in the specified volume (a 2 cmx2 cmx3 cm volume) at the focal depth of 15 to 18 cm. Ex vivo experiment results also verify the capability of the developed array to ablate deep target tissue by either moving single focal point or generating multiple foci simultaneously.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
49
|
Hand JW, Shaw A, Sadhoo N, Rajagopal S, Dickinson RJ, Gavrilov LR. A random phased array device for delivery of high intensity focused ultrasound. Phys Med Biol 2009; 54:5675-93. [PMID: 19724099 DOI: 10.1088/0031-9155/54/19/002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Randomized phased arrays can offer electronic steering of a single focus and simultaneous multiple foci concomitant with low levels of secondary maxima and are potentially useful as sources of high intensity focused ultrasound (HIFU). This work describes laboratory testing of a 1 MHz random phased array consisting of 254 elements on a spherical shell of radius of curvature 130 mm and diameter 170 mm. Acoustic output power and efficiency are measured for a range of input electrical powers, and field distributions for various single- and multiple-focus conditions are evaluated by a novel technique using an infrared camera to provide rapid imaging of temperature changes on the surface of an absorbing target. Experimental results show that the array can steer a single focus laterally to at least +/-15 mm off axis and axially to more than +/-15 mm from the centre of curvature of the array and patterns of four and five simultaneous foci +/-10 mm laterally and axially whilst maintaining low intensity levels in secondary maxima away from the targeted area in good agreement with linear theoretical predictions. Experiments in which pork meat was thermally ablated indicate that contiguous lesions several cm(3) in volume can be produced using the patterns of multiple foci.
Collapse
Affiliation(s)
- J W Hand
- Radiological Sciences Unit, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London W12 0HS, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Mougenot C, Quesson B, de Senneville BD, de Oliveira PL, Sprinkhuizen S, Palussière J, Grenier N, Moonen CTW. Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magn Reson Med 2009; 61:603-14. [PMID: 19097249 DOI: 10.1002/mrm.21887] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-intensity focused ultrasound (HIFU) is an efficient noninvasive technique for local heating. Using MRI thermal maps, a proportional, integral, and derivative (PID) automatic temperature control was previously applied at the focal point, or at several points within a plane perpendicular to the beam axis using a multispiral focal point trajectory. This study presents a flexible and rapid method to extend the spatial PID temperature control to three dimensions during each MR dynamic. The temperature in the complete volume is regulated by taking into account the overlap effect of nearby sonication points, which tends to enlarge the heated area along the beam axis. Volumetric temperature control in vitro in gel and in vivo in rabbit leg muscle was shown to provide temperature control with a precision close to that of the temperature MRI measurements. The proposed temperature control ensures heating throughout the volume of interest of up to 1 ml composed of 287 voxels with 95% of the energy deposited within its boundaries and reducing the typical average temperature overshoot to 1 degrees C.
Collapse
Affiliation(s)
- Charles Mougenot
- Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR5231 Centre National de la Recherche Scientifique/Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|