Vanualailai J, Nakagiri SI. Some generalized sufficient convergence criteria for nonlinear continuous neural networks.
Neural Comput 2005;
17:1820-35. [PMID:
15969919 DOI:
10.1162/0899766054026701]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A reason for applying the direct method of Lyapunov to artificial neural networks (ANNs) is to design dynamical neural networks so that they exhibit global asymptotic stability. Lyapunov functions that frequently appear in the ANN literature include the quadratic function, the Persidskii function, and the Luré-Postnikov function. This contribution revisits the quadratic function and shows that via Krasovskii-like stability criteria, it is possible to have a very simple and systematic procedure to obtain not only new and generalized results but also well-known sufficient conditions for convergence established recently by non-Lyapunov methods, such as the matrix measure and nonlinear measure.
Collapse