1
|
Deshpande S, Doyle FJ, Dassau E. Glucose Rate-of-Change and Insulin-on-Board Jointly Weighted Zone Model Predictive Control. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY : A PUBLICATION OF THE IEEE CONTROL SYSTEMS SOCIETY 2023; 31:2261-2274. [PMID: 38525198 PMCID: PMC10958373 DOI: 10.1109/tcst.2023.3291573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
We present design and evaluation of closed-loop insulin delivery using zone model predictive control (MPC) featuring an adaptive weighting scheme to address prolonged hyperglycemia due to changes in insulin sensitivity, underdelivery from profile mismatch, and meal composition. In the MPC cost function, the penalty on predicted glucose deviation from the upper zone boundary is weighted by a joint function of predicted glucose rate-of-change (ROC) and insulin-on-board (IOB). The asymmetric weighting gradually increases when glucose ROC and IOB were jointly low, independent of glucose magnitude, to limit hyperglycemia while aggressively reduces for negative glucose ROC to avoid hypoglycemia. The proposed controller was evaluated using two simulation scenarios: an induced resistance scenario and a nominal scenario to highlight the performance over a reference zone MPC with glucose ROC weighting only. The continuous adaption scheme resulted in consistent improvement for the entire glucose range without incurring additional risk of hypoglycemia. For the induced resistance and no feedforward bolus scenario, the percent time in 70-180 mg/dL was higher (53.5% versus 48.9%, p<0.001) with larger improvement in the overnight percent time in tighter glucose range 70-140 mg/dL (70.9% versus 52.9%, p<0.001). The results from extensive simulations, as well as clinical validation in three different outpatient studies demonstrate the utility and safety of the proposed zone MPC.
Collapse
Affiliation(s)
- Sunil Deshpande
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| |
Collapse
|
2
|
Rios YY, García-Rodríguez JA, Sanchez EN, Alanis AY, Ruiz-Velázquez E, Pardo Garcia A. Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA TRANSACTIONS 2022; 126:203-212. [PMID: 34446285 DOI: 10.1016/j.isatra.2021.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Diabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific community has directed research in developing technologies to reduce T1DM complications. This contribution is related to a feedback control strategy for blood glucose management in population samples of ten virtual adult subjects, adolescents and children. This scheme focuses on the development of an inverse optimal control (IOC) proposal which is integrated by neural identification, a multi-step prediction (MSP) strategy, and Takagi-Sugeno (T-S) fuzzy inference to shape the convenient insulin infusion in the treatment of T1DM patients. The MSP makes it possible to estimate the glucose dynamics 15 min in advance; therefore, this estimation allows the Neuro-Fuzzy-IOC (NF-IOC) controller to react in advance to prevent hypoglycemic and hyperglycemic events. The T-S fuzzy membership functions are defined in such a way that the respective inferences change basal infusion rates for each patient's condition. The results achieved for scenarios simulated in Uva/Padova virtual software illustrate that this proposal is suitable to maintain blood glucose levels within normoglycemic values (70-115 mg/dL); furthermore, this level remains less than 250 mg/dL during the postprandial event. A comparison between a simple neural IOC (NIOC) and the proposed NF-IOC is carried out using the analysis for control variability named CVGA chart included in the Uva/Padova software. This analysis highlights the improvement of the NF-IOC treatment, proposed in this article, on the NIOC approach because each subject is located inside safe zones for the entire duration of the simulation.
Collapse
Affiliation(s)
- Y Yuliana Rios
- GAICO, Grupo de Automatización y Control, Universidad Tecnológica de Bolívar, Cartagena de Indias, Bolívar, Colombia.
| | - J A García-Rodríguez
- CUCEI, Electronics and Computing Division, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Edgar N Sanchez
- CINVESTAV, Electrical Engineering Department, Zapopan, Jalisco, Mexico
| | - Alma Y Alanis
- CUCEI, Electronics and Computing Division, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - E Ruiz-Velázquez
- CUCEI, Electronics and Computing Division, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Aldo Pardo Garcia
- A&C, Grupo de Automatización y Control, Universidad de Pamplona, Pamplona, Norte de Santander, Colombia
| |
Collapse
|
3
|
Gondhalekar R, Dassau E, Doyle FJ. Velocity-weighting & velocity-penalty MPC of an artificial pancreas: Improved safety & performance. AUTOMATICA : THE JOURNAL OF IFAC, THE INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL 2018; 91:105-117. [PMID: 30034017 PMCID: PMC6051553 DOI: 10.1016/j.automatica.2018.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel Model Predictive Control (MPC) law for the closed-loop operation of an Artificial Pancreas (AP) to treat type 1 diabetes is proposed. The contribution of this paper is to simultaneously enhance both the safety and performance of an AP, by reducing the incidence of controller-induced hypoglycemia, and by promoting assertive hyperglycemia correction. This is achieved by integrating two MPC features separately introduced by the authors previously to independently improve the control performance with respect to these two coupled issues. Velocity-weighting MPC reduces the occurrence of controller-induced hypoglycemia. Velocity-penalty MPC yields more effective hyperglycemia correction. Benefits of the proposed MPC law over the MPC strategy deployed in the authors' previous clinical trial campaign are demonstrated via a comprehensive in-silico analysis. The proposed MPC law was deployed in four distinct US Food & Drug Administration approved clinical trial campaigns, the most extensive of which involved 29 subjects each spending three months in closed-loop. The paper includes implementation details, an explanation of the state-dependent cost functions required for velocity-weighting and penalties, a discussion of the resulting nonlinear optimization problem, a description of the four clinical trial campaigns, and control-related trial highlights.
Collapse
Affiliation(s)
- Ravi Gondhalekar
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
Forlenza GP, Deshpande S, Ly TT, Howsmon DP, Cameron F, Baysal N, Mauritzen E, Marcal T, Towers L, Bequette BW, Huyett LM, Pinsker JE, Gondhalekar R, Doyle FJ, Maahs DM, Buckingham BA, Dassau E. Application of Zone Model Predictive Control Artificial Pancreas During Extended Use of Infusion Set and Sensor: A Randomized Crossover-Controlled Home-Use Trial. Diabetes Care 2017; 40:1096-1102. [PMID: 28584075 PMCID: PMC5521973 DOI: 10.2337/dc17-0500] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/06/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE As artificial pancreas (AP) becomes standard of care, consideration of extended use of insulin infusion sets (IIS) and continuous glucose monitors (CGMs) becomes vital. We conducted an outpatient randomized crossover study to test the safety and efficacy of a zone model predictive control (zone-MPC)-based AP system versus sensor augmented pump (SAP) therapy in which IIS and CGM failures were provoked via extended wear to 7 and 21 days, respectively. RESEARCH DESIGN AND METHODS A smartphone-based AP system was used by 19 adults (median age 23 years [IQR 10], mean 8.0 ± 1.7% HbA1c) over 2 weeks and compared with SAP therapy for 2 weeks in a crossover, unblinded outpatient study with remote monitoring in both study arms. RESULTS AP improved percent time 70-140 mg/dL (48.1 vs. 39.2%; P = 0.016) and time 70-180 mg/dL (71.6 vs. 65.2%; P = 0.008) and decreased median glucose (141 vs. 153 mg/dL; P = 0.036) and glycemic variability (SD 52 vs. 55 mg/dL; P = 0.044) while decreasing percent time <70 mg/dL (1.3 vs. 2.7%; P = 0.001). AP also improved overnight control, as measured by mean glucose at 0600 h (140 vs. 158 mg/dL; P = 0.02). IIS failures (1.26 ± 1.44 vs. 0.78 ± 0.78 events; P = 0.13) and sensor failures (0.84 ± 0.6 vs. 1.1 ± 0.73 events; P = 0.25) were similar between AP and SAP arms. Higher percent time in closed loop was associated with better glycemic outcomes. CONCLUSIONS Zone-MPC significantly and safely improved glycemic control in a home-use environment despite prolonged CGM and IIS wear. This project represents the first home-use AP study attempting to provoke and detect component failure while successfully maintaining safety and effective glucose control.
Collapse
Affiliation(s)
| | - Sunil Deshpande
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- William Sansum Diabetes Center, Santa Barbara, CA
| | - Trang T Ly
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Daniel P Howsmon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Faye Cameron
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Nihat Baysal
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Eric Mauritzen
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA
| | - Tatiana Marcal
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Lindsey Towers
- Barbara Davis Center, University of Colorado Denver, Denver, CO
| | - B Wayne Bequette
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Lauren M Huyett
- William Sansum Diabetes Center, Santa Barbara, CA
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA
| | | | - Ravi Gondhalekar
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- William Sansum Diabetes Center, Santa Barbara, CA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- William Sansum Diabetes Center, Santa Barbara, CA
| | - David M Maahs
- Barbara Davis Center, University of Colorado Denver, Denver, CO
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Bruce A Buckingham
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- William Sansum Diabetes Center, Santa Barbara, CA
| |
Collapse
|
5
|
Huyett LM, Ly TT, Forlenza GP, Reuschel-DiVirgilio S, Messer LH, Wadwa RP, Gondhalekar R, Doyle FJ, Pinsker JE, Maahs DM, Buckingham BA, Dassau E. Outpatient Closed-Loop Control with Unannounced Moderate Exercise in Adolescents Using Zone Model Predictive Control. Diabetes Technol Ther 2017; 19:331-339. [PMID: 28459617 PMCID: PMC5510043 DOI: 10.1089/dia.2016.0399] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The artificial pancreas (AP) has the potential to improve glycemic control in adolescents. This article presents the first evaluation in adolescents of the Zone Model Predictive Control and Health Monitoring System (ZMPC+HMS) AP algorithms, and their first evaluation in a supervised outpatient setting with frequent exercise. MATERIALS AND METHODS Adolescents with type 1 diabetes underwent 3 days of closed-loop control (CLC) in a hotel setting with the ZMPC+HMS algorithms on the Diabetes Assistant platform. Subjects engaged in twice-daily exercise, including soccer, tennis, and bicycling. Meal size (unrestricted) was estimated and entered into the system by subjects to trigger a bolus, but exercise was not announced. RESULTS Ten adolescents (11.9-17.7 years) completed 72 h of CLC, with data on 95 ± 14 h of sensor-augmented pump (SAP) therapy before CLC as a comparison to usual therapy. The percentage of time with continuous glucose monitor (CGM) 70-180 mg/dL was 71% ± 10% during CLC, compared to 57% ± 16% during SAP (P = 0.012). Nocturnal control during CLC was safe, with 0% (0%, 0.6%) of time with CGM <70 mg/dL compared to 1.1% (0.0%, 14%) during SAP. Despite large meals (estimated up to 120 g carbohydrate), only 8.0% ± 6.9% of time during CLC was spent with CGM >250 mg/dL (16% ± 14% during SAP). The system remained connected in CLC for 97% ± 2% of the total study time. No adverse events or severe hypoglycemia occurred. CONCLUSIONS The use of the ZMPC+HMS algorithms is feasible in the adolescent outpatient environment and achieved significantly more time in the desired glycemic range than SAP in the face of unannounced exercise and large announced meal challenges.
Collapse
Affiliation(s)
- Lauren M. Huyett
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
- William Sansum Diabetes Center, Santa Barbara, California
| | - Trang T. Ly
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Stanford University, Stanford, California
| | - Gregory P. Forlenza
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Suzette Reuschel-DiVirgilio
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Stanford University, Stanford, California
| | - Laurel H. Messer
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - R. Paul Wadwa
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ravi Gondhalekar
- William Sansum Diabetes Center, Santa Barbara, California
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Francis J. Doyle
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
- William Sansum Diabetes Center, Santa Barbara, California
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | | | - David M. Maahs
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Stanford University, Stanford, California
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Bruce A. Buckingham
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Stanford University, Stanford, California
| | - Eyal Dassau
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
- William Sansum Diabetes Center, Santa Barbara, California
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
6
|
Gondhalekar R, Dassau E, Doyle FJ. Tackling problem nonlinearities & delays via asymmetric, state-dependent objective costs in MPC of an artificial pancreas. IFAC-PAPERSONLINE 2015; 48:154-159. [PMID: 30225467 PMCID: PMC6138875 DOI: 10.1016/j.ifacol.2015.11.276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The design of a Model Predictive Control (MPC) law for an Artificial Pancreas (AP) that automatically delivers insulin to people with type 1 diabetes mellitus is considered. An MPC law was recently proposed that exploits the simplicity of linear dynamical models, but is in two ways a 'nonlinear' departure of standard linear MPC, while circumnavigating the complexity of cumbersome, fully nonlinear MPC approaches. The first of two issues focused on is the nonlinearity of the control problem, and it is demonstrated how this can be tackled via asymmetric objective functions. The second issue is controller induced hypoglycemia resulting from the large delay in actuation and sensing. The proposed MPC strategy employs an asymmetric, state-dependent objective function that leads to a nonlinear optimization problem. The result is an AP controller with significantly elevated safety and comparable control performance. The contribution of this paper is a detailed in-silico analysis of the proposed control law, and a clinical demonstration of the benefits of asymmetric objective functions.
Collapse
Affiliation(s)
| | - Eyal Dassau
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Francis J Doyle
- University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|