1
|
Jiao L, Zhao J, Wang C, Liu X, Liu F, Li L, Shang R, Li Y, Ma W, Yang S. Nature-Inspired Intelligent Computing: A Comprehensive Survey. RESEARCH (WASHINGTON, D.C.) 2024; 7:0442. [PMID: 39156658 PMCID: PMC11327401 DOI: 10.34133/research.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024]
Abstract
Nature, with its numerous surprising rules, serves as a rich source of creativity for the development of artificial intelligence, inspiring researchers to create several nature-inspired intelligent computing paradigms based on natural mechanisms. Over the past decades, these paradigms have revealed effective and flexible solutions to practical and complex problems. This paper summarizes the natural mechanisms of diverse advanced nature-inspired intelligent computing paradigms, which provide valuable lessons for building general-purpose machines capable of adapting to the environment autonomously. According to the natural mechanisms, we classify nature-inspired intelligent computing paradigms into 4 types: evolutionary-based, biological-based, social-cultural-based, and science-based. Moreover, this paper also illustrates the interrelationship between these paradigms and natural mechanisms, as well as their real-world applications, offering a comprehensive algorithmic foundation for mitigating unreasonable metaphors. Finally, based on the detailed analysis of natural mechanisms, the challenges of current nature-inspired paradigms and promising future research directions are presented.
Collapse
Affiliation(s)
- Licheng Jiao
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Jiaxuan Zhao
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Chao Wang
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Xu Liu
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Fang Liu
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Lingling Li
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Ronghua Shang
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Yangyang Li
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Wenping Ma
- School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Shuyuan Yang
- School of Artificial Intelligence, Xidian University, Xi’an, China
| |
Collapse
|
2
|
Fang Y, Zhong B. Cell segmentation in fluorescence microscopy images based on multi-scale histogram thresholding. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16259-16278. [PMID: 37920012 DOI: 10.3934/mbe.2023726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Cell segmentation from fluorescent microscopy images plays an important role in various applications, such as disease mechanism assessment and drug discovery research. Exiting segmentation methods often adopt image binarization as the first step, through which the foreground cell is separated from the background so that the subsequent processing steps can be greatly facilitated. To pursue this goal, a histogram thresholding can be performed on the input image, which first applies a Gaussian smoothing to suppress the jaggedness of the histogram curve and then exploits Rosin's method to determine a threshold for conducting image binarization. However, an inappropriate amount of smoothing could lead to the inaccurate segmentation of cells. To address this crucial problem, a multi-scale histogram thresholding (MHT) technique is proposed in the present paper, where the scale refers to the standard deviation of the Gaussian that determines the amount of smoothing. To be specific, the image histogram is smoothed at three chosen scales first, and then the smoothed histogram curves are fused to conduct image binarization via thresholding. To further improve the segmentation accuracy and overcome the difficulty of extracting overlapping cells, our proposed MHT technique is incorporated into a multi-scale cell segmentation framework, in which a region-based ellipse fitting technique is adopted to identify overlapping cells. Extensive experimental results obtained on benchmark datasets show that the new method can deliver superior performance compared to the current state-of-the-arts.
Collapse
Affiliation(s)
- Yating Fang
- School of Computer Science and Technology, Soochow University, Suzhou 215021, China
| | - Baojiang Zhong
- School of Computer Science and Technology, Soochow University, Suzhou 215021, China
| |
Collapse
|
3
|
Guo W, Wu M, Dai F, Qiang Y. Improved Environmental Stimulus and Biological Competition Tactics Interactive Artificial Ecological Optimization Algorithm for Clustering. Biomimetics (Basel) 2023; 8:242. [PMID: 37366837 DOI: 10.3390/biomimetics8020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
An interactive artificial ecological optimization algorithm (SIAEO) based on environmental stimulus and a competition mechanism was devised to find the solution to a complex calculation, which can often become bogged down in local optimum because of the sequential execution of consumption and decomposition stages in the artificial ecological optimization algorithm. Firstly, the environmental stimulus defined by population diversity makes the population interactively execute the consumption operator and decomposition operator to abate the inhomogeneity of the algorithm. Secondly, the three different types of predation modes in the consumption stage were regarded as three different tasks, and the task execution mode was determined by the maximum cumulative success rate of each individual task execution. Furthermore, the biological competition operator is recommended to modify the regeneration strategy so that the SIAEO algorithm can provide consideration to the exploitation in the exploration stage, break the equal probability execution mode of the AEO, and promote the competition among operators. Finally, the stochastic mean suppression alternation exploitation problem is introduced in the later exploitation process of the algorithm, which can tremendously heighten the SIAEO algorithm to run away the local optimum. A comparison between SIAEO and other improved algorithms is performed on the CEC2017 and CEC2019 test set.
Collapse
Affiliation(s)
- Wenyan Guo
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Mingfei Wu
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Fang Dai
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Yufan Qiang
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| |
Collapse
|
4
|
Li S, Li Z, Li Q, Zhang M, Li L. Hybrid improved capuchin search algorithm for plant image thresholding. FRONTIERS IN PLANT SCIENCE 2023; 14:1122788. [PMID: 36778683 PMCID: PMC9909333 DOI: 10.3389/fpls.2023.1122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
With the development and wider application of meta-heuristic optimization algorithms, researchers increasingly apply them to threshold optimization of multi-level image segmentation. This paper explores the performance and effects of Capuchin Search Algorithm (CAPSA) in threshold optimization. To solve problems of uneven distribution in the initial population of Capuchin Search Algorithm, low levels of global search performance and premature falling into local optima, this paper proposes an improved Capuchin Search Algorithm (ICAPSA) through a multi-strategy approach. ICAPSA uses chaotic opposite-based learning strategy to initialize the positions of individual capuchins, and improve the quality of the initial population. In the iterative position updating process, Levy Flight disturbance strategy is introduced to balance the global optimization and local exploitation of the algorithm. Finally, taking Kapur as the objective function, this paper applies ICAPSA to multi-level thresholding in the plant images, and compares its segmentation effects with the original CAPSA, the Fuzzy Artificial Bee Colony algorithm (FABC), the Differential Coyote Optimization Algorithm (DCOA), the Modified Whale Optimization Algorithm (MWOA) and Improved Satin Bowerbird Optimization Algorithm (ISBO). Through comparison, it is found that ICAPSA demonstrates superior segmentation effect, both in the visual effects of image segmentation and in data comparison.
Collapse
Affiliation(s)
- Shujing Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
| | - Zhangfei Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
| | - Qinghe Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
| | - Mingyu Zhang
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
| | - Linguo Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
- School of Computer, Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
5
|
Emam MM, Houssein EH, Ghoniem RM. A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images. Comput Biol Med 2023; 152:106404. [PMID: 36521356 DOI: 10.1016/j.compbiomed.2022.106404] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequate diversity, local optima, and unbalanced exploitation abilities as other metaheuristic algorithms. The RUNge Kutta optimizer (RUN) is a novel metaheuristic algorithm that has demonstrated effectiveness in solving real-world optimization problems. The enhanced solution quality (ESQ) in RUN utilizes the thus-far best solution to promote the quality of solutions, improve the convergence speed, and effectively balance the exploration and exploitation steps. Also, the Scale factor (SF) has a randomized adaptation nature, which helps RUN in further improving the exploration and exploitation steps. This parameter ensures a smooth transition from exploration to exploitation. In order to mitigate the drawbacks of the RSA algorithm, this paper proposed a modified RSA (mRSA), which combines the RSA algorithm with the RUN. The ESQ mechanism and the scale factor boost the original RSA's performance, enhance convergence speed, bypass local optimum, and enhance the balance between exploitation and exploration. The validity of mRSA was verified using two experimental sequences. First, we applied mRSA to CEC'2020 benchmark functions of various types and dimensions, showing that mRSA has more robust search capabilities than the original RSA and popular counterpart algorithms concerning statistical, convergence, and diversity measurements. The second experiment evaluated mRSA for a real-world application to solve magnetic resonance imaging (MRI) brain image segmentation. Overall experimental results confirm that the mRSA has a strong optimization ability. Also, mRSA method is a more successful multilevel thresholding segmentation and outperforms comparison methods according to different performance measures.
Collapse
Affiliation(s)
- Marwa M Emam
- Faculty of Computers and Information, Minia University, Minia, Egypt.
| | - Essam H Houssein
- Faculty of Computers and Information, Minia University, Minia, Egypt.
| | - Rania M Ghoniem
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; Department of Computer, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
6
|
Neggaz I, Neggaz N, Fizazi H. Boosting Archimedes optimization algorithm using trigonometric operators based on feature selection for facial analysis. Neural Comput Appl 2022; 35:3903-3923. [PMID: 36267472 PMCID: PMC9569187 DOI: 10.1007/s00521-022-07925-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 10/03/2022] [Indexed: 01/31/2023]
Abstract
Due to technical advancements and the proliferation of mobile applications, facial analysis (FA) of humans has recently become an important area for computer vision research. FA investigates a variety of difficulties, including gender recognition, facial expression recognition, age and race recognition, with the goal of automatically comprehending social interactions. Due to the dimensional challenge posed by pre-trained CNN networks, the scientific community has developed numerous techniques inspired by biology, swarm intelligence theory, physics, and mathematical rules. This article presents a gender recognition system based on scAOA, that is a modified version of the Archimedes optimization algorithm (AOA). The latest variant (scAOA) enhances the exploitation stage by using trigonometric operators inspired by the sine cosine algorithm (SCA) in order to prevent local optima and to accelerate the convergence. The main purpose of this paper is to apply scAOA to select the relevant deep features provided by two pretrained models of CNN (AlexNet & ResNet) to recognize the gender of a human person categorized into two classes (men and women). Two datasets are used to evaluate the proposed approach (scAOA): the Brazilian FEI dataset and the Georgia Tech Face dataset (GT). In terms of accuracy, Fscore and statistical test, the comparison analysis demonstrates that scAOA outperforms other modern and competitive optimizers such as AOA, SCA, Ant lion optimizer (ALO), Salp swarm algorithm (SSA), Grey wolf optimizer (GWO), Simple genetic algorithm (SGA), Grasshopper optimization algorithm (GOA) and Particle swarm optimizer (PSO).
Collapse
Affiliation(s)
- Imène Neggaz
- Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTO-MB), BP 1505, EL M’naouer, 3100 Oran, Algeria
| | - Nabil Neggaz
- Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTO-MB), BP 1505, EL M’naouer, 3100 Oran, Algeria
| | - Hadria Fizazi
- Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTO-MB), BP 1505, EL M’naouer, 3100 Oran, Algeria
| |
Collapse
|
7
|
Su H, Zhao D, Elmannai H, Heidari AA, Bourouis S, Wu Z, Cai Z, Gui W, Chen M. Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization. Comput Biol Med 2022; 146:105618. [PMID: 35690477 PMCID: PMC9113963 DOI: 10.1016/j.compbiomed.2022.105618] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
COVID-19 is currently raging worldwide, with more patients being diagnosed every day. It usually is diagnosed by examining pathological photographs of the patient's lungs. There is a lot of detailed and essential information on chest radiographs, but manual processing is not as efficient or accurate. As a result, how efficiently analyzing and processing chest radiography of COVID-19 patients is an important research direction to promote COVID-19 diagnosis. To improve the processing efficiency of COVID-19 chest films, a multilevel thresholding image segmentation (MTIS) method based on an enhanced multiverse optimizer (CCMVO) is proposed. CCMVO is improved from the original Multi-Verse Optimizer by introducing horizontal and vertical search mechanisms. It has a more assertive global search ability and can jump out of the local optimum in optimization. The CCMVO-based MTIS method can obtain higher quality segmentation results than HHO, SCA, and other forms and is less prone to stagnation during the segmentation process. To verify the performance of the proposed CCMVO algorithm, CCMVO is first compared with DE, MVO, and other algorithms by 30 benchmark functions; then, the proposed CCMVO is applied to image segmentation of COVID-19 chest radiography; finally, this paper verifies that the combination of MTIS and CCMVO is very successful with good segmentation results by using the Feature Similarity Index (FSIM), the Peak Signal to Noise Ratio (PSNR), and the Structural Similarity Index (SSIM). Therefore, this research can provide an effective segmentation method for a medical organization to process COVID-19 chest radiography and then help doctors diagnose coronavirus pneumonia (COVID-19).
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Ali Asghar Heidari
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Sami Bourouis
- Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Zongda Wu
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Zhennao Cai
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Wenyong Gui
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Tiwari T, Saraswat M. A new firefly algorithm-based superpixel clustering method for vehicle segmentation. Soft comput 2022; 27:1-14. [PMID: 35729951 PMCID: PMC9190197 DOI: 10.1007/s00500-022-07206-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
The vehicle segmentation in the images of a crowded and unstructured road traffic, having inconsistent driving patterns and vivid attributes like colour, shapes, and size, is a complex task. For the same, this paper presents a new firefly algorithm-based superpixel clustering method for vehicle segmentation. The proposed method introduces a modified firefly algorithm by incorporating the best solution for enhancing the exploitation behaviour and solution precision. The modified firefly algorithm is further used to obtain the optimal superpixel clusters. The modified firefly algorithm is compared against state-of-the-art meta-heuristic algorithms on IEEE CEC 2015 benchmark problems in terms of mean fitness value, Wilcoxon rank-sum test, convergence behaviour, and box plot. The proposed meta-heuristic algorithm performed superior on more than 80% of the considered benchmark problems. Moreover, the modified firefly algorithm is statistically better on more than 92% of the total problems during Wilcoxon test. Further, the proposed segmentation method is analysed on a traffic dataset to segment the auto-rickshaw. The performance of the proposed method has been compared with kmeans-based superpixel clustering method. The proposed method shows the highest mean value of 0.6242 for Dice coefficient. Both qualitative and quantitative results affirm the efficacy of the proposed method.
Collapse
Affiliation(s)
- Twinkle Tiwari
- Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, Noida, India
| | - Mukesh Saraswat
- Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
9
|
Enhanced Parallel Sine Cosine Algorithm for Constrained and Unconstrained Optimization. MATHEMATICS 2022. [DOI: 10.3390/math10071166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The sine cosine algorithm’s main idea is the sine and cosine-based vacillation outwards or towards the best solution. The first main contribution of this paper proposes an enhanced version of the SCA algorithm called as ESCA algorithm. The supremacy of the proposed algorithm over a set of state-of-the-art algorithms in terms of solution accuracy and convergence speed will be demonstrated by experimental tests. When these algorithms are transferred to the business sector, they must meet time requirements dependent on the industrial process. If these temporal requirements are not met, an efficient solution is to speed them up by designing parallel algorithms. The second major contribution of this work is the design of several parallel algorithms for efficiently exploiting current multicore processor architectures. First, one-level synchronous and asynchronous parallel ESCA algorithms are designed. They have two favors; retain the proposed algorithm’s behavior and provide excellent parallel performance by combining coarse-grained parallelism with fine-grained parallelism. Moreover, the parallel scalability of the proposed algorithms is further improved by employing a two-level parallel strategy. Indeed, the experimental results suggest that the one-level parallel ESCA algorithms reduce the computing time, on average, by 87.4% and 90.8%, respectively, using 12 physical processing cores. The two-level parallel algorithms provide extra reductions of the computing time by 91.4%, 93.1%, and 94.5% with 16, 20, and 24 processing cores, including physical and logical cores. Comparison analysis is carried out on 30 unconstrained benchmark functions and three challenging engineering design problems. The experimental outcomes show that the proposed ESCA algorithm behaves outstandingly well in terms of exploration and exploitation behaviors, local optima avoidance, and convergence speed toward the optimum. The overall performance of the proposed algorithm is statistically validated using three non-parametric statistical tests, namely Friedman, Friedman aligned, and Quade tests. constrained optimization; metaheuristic; heuristic algorithm; OpenMP; parallel algorithms; SCA algorithm; unconstrained optimization
Collapse
|
10
|
Su H, Zhao D, Yu F, Heidari AA, Zhang Y, Chen H, Li C, Pan J, Quan S. Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images. Comput Biol Med 2022; 142:105181. [PMID: 35016099 PMCID: PMC9749108 DOI: 10.1016/j.compbiomed.2021.105181] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
The artificial bee colony algorithm (ABC) has been successfully applied to various optimization problems, but the algorithm still suffers from slow convergence and poor quality of optimal solutions in the optimization process. Therefore, in this paper, an improved ABC (CCABC) based on a horizontal search mechanism and a vertical search mechanism is proposed to improve the algorithm's performance. In addition, this paper also presents a multilevel thresholding image segmentation (MTIS) method based on CCABC to enhance the effectiveness of the multilevel thresholding image segmentation method. To verify the performance of the proposed CCABC algorithm and the performance of the improved image segmentation method. First, this paper demonstrates the performance of the CCABC algorithm itself by comparing CCABC with 15 algorithms of the same type using 30 benchmark functions. Then, this paper uses the improved multi-threshold segmentation method for the segmentation of COVID-19 X-ray images and compares it with other similar plans in detail. Finally, this paper confirms that the incorporation of CCABC in MTIS is very effective by analyzing appropriate evaluation criteria and affirms that the new MTIS method has a strong segmentation performance.
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Fanhua Yu
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yu Zhang
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Provincial, Wenzhou, Zhejiang, 325000, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, Zhejiang, 325000, China.
| | - Shichao Quan
- Department of General Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Department of Big Data in Health Science, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
11
|
Boosting arithmetic optimization algorithm by sine cosine algorithm and levy flight distribution for solving engineering optimization problems. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-06906-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
|
13
|
Abstract
Rice sheath blight is one of the main diseases in rice production. The traditional detection method, which needs manual recognition, is usually inefficient and slow. In this study, a recognition method for identifying rice sheath blight based on a backpropagation (BP) neural network is posed. Firstly, the sample image is smoothed by median filtering and histogram equalization, and the edge of the lesion is segmented using a Sobel operator, which largely reduces the background information and significantly improves the image quality. Then, the corresponding feature parameters of the image are extracted based on color and texture features. Finally, a BP neural network is built for training and testing with excellent tunability and easy optimization. The results demonstrate that when the number of hidden layer nodes is set to 90, the recognition accuracy of the BP neural network can reach up to 85.8%. Based on the color and texture features of the rice sheath blight image, the recognition algorithm constructed with a BP neural network has high accuracy and can effectively make up for the deficiency of manual recognition.
Collapse
|
14
|
Multilevel thresholding segmentation of color plant disease images using metaheuristic optimization algorithms. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06437-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
A hybrid binary grey wolf optimizer for selection and reduction of reference points with extreme learning machine approach on local GNSS/leveling geoid determination. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Rehman MZ, Khan A, Ghazali R, Aamir M, Nawi NM. A new Multi Sine-Cosine algorithm for unconstrained optimization problems. PLoS One 2021; 16:e0255269. [PMID: 34358237 PMCID: PMC8345889 DOI: 10.1371/journal.pone.0255269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
The Sine-Cosine algorithm (SCA) is a population-based metaheuristic algorithm utilizing sine and cosine functions to perform search. To enable the search process, SCA incorporates several search parameters. But sometimes, these parameters make the search in SCA vulnerable to local minima/maxima. To overcome this problem, a new Multi Sine-Cosine algorithm (MSCA) is proposed in this paper. MSCA utilizes multiple swarm clusters to diversify & intensify the search in-order to avoid the local minima/maxima problem. Secondly, during update MSCA also checks for better search clusters that offer convergence to global minima effectively. To assess its performance, we tested the MSCA on unimodal, multimodal and composite benchmark functions taken from the literature. Experimental results reveal that the MSCA is statistically superior with regards to convergence as compared to recent state-of-the-art metaheuristic algorithms, including the original SCA.
Collapse
Affiliation(s)
- Muhammad Zubair Rehman
- Soft Computing & Data Mining Centre (SMC), Faculty of Computer Science & Information Technology (FSKTM), Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia
| | - Abdullah Khan
- Institute of Computer Sciences and IT (ICS/IT), The University of Agriculture, Peshawar, Pakistan
| | - Rozaida Ghazali
- Soft Computing & Data Mining Centre (SMC), Faculty of Computer Science & Information Technology (FSKTM), Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia
| | - Muhammad Aamir
- Soft Computing & Data Mining Centre (SMC), Faculty of Computer Science & Information Technology (FSKTM), Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia
| | - Nazri Mohd Nawi
- Soft Computing & Data Mining Centre (SMC), Faculty of Computer Science & Information Technology (FSKTM), Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia
| |
Collapse
|
17
|
Avalos O, Ayala E, Wario F, Pérez-Cisneros M. An accurate Cluster chaotic optimization approach for digital medical image segmentation. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05771-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Abd Elaziz M, Lu S, He S. A multi-leader whale optimization algorithm for global optimization and image segmentation. EXPERT SYSTEMS WITH APPLICATIONS 2021; 175:114841. [DOI: 10.1016/j.eswa.2021.114841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Ewees AA, Abd Elaziz M, Oliva D. A new multi-objective optimization algorithm combined with opposition-based learning. EXPERT SYSTEMS WITH APPLICATIONS 2021; 165:113844. [DOI: 10.1016/j.eswa.2020.113844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
20
|
Abd Elaziz M, Nabil N, Moghdani R, Ewees AA, Cuevas E, Lu S. Multilevel thresholding image segmentation based on improved volleyball premier league algorithm using whale optimization algorithm. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:12435-12468. [PMID: 33456315 PMCID: PMC7797715 DOI: 10.1007/s11042-020-10313-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/26/2020] [Accepted: 12/22/2020] [Indexed: 05/31/2023]
Abstract
Multilevel thresholding image segmentation has received considerable attention in several image processing applications. However, the process of determining the optimal threshold values (as the preprocessing step) is time-consuming when traditional methods are used. Although these limitations can be addressed by applying metaheuristic methods, such approaches may be idle with a local solution. This study proposed an alternative multilevel thresholding image segmentation method called VPLWOA, which is an improved version of the volleyball premier league (VPL) algorithm using the whale optimization algorithm (WOA). In VPLWOA, the WOA is used as a local search system to improve the learning phase of the VPL algorithm. A set of experimental series is performed using two different image datasets to assess the performance of the VPLWOA in determining the values that may be optimal threshold, and the performance of this algorithm is compared with other approaches. Experimental results show that the proposed VPLWOA outperforms the other approaches in terms of several performance measures, such as signal-to-noise ratio and structural similarity index.
Collapse
Affiliation(s)
- Mohamed Abd Elaziz
- Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Neggaz Nabil
- Faculté des mathématiques et informatique - Département d’Informatique- Laboratoire SIMPA, Université des Sciences et de la Technologie d’Oran Mohammed Boudiaf, USTO-MB, BP 1505, El M’naouer, 31000 Oran, Algeria
| | - Reza Moghdani
- Industrial Management Department, Persian Gulf University, Boushehr, Iran
| | - Ahmed A. Ewees
- Department of Computer, Damietta University, Damietta, Egypt
| | - Erik Cuevas
- Departamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, Mexico
| | - Songfeng Lu
- School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
21
|
Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images. Neural Comput Appl 2021; 33:16899-16919. [PMID: 34248291 PMCID: PMC8261821 DOI: 10.1007/s00521-021-06273-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO's initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu's method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu's method for all the used metrics.
Collapse
|
22
|
Gabis AB, Meraihi Y, Mirjalili S, Ramdane-Cherif A. A comprehensive survey of sine cosine algorithm: variants and applications. Artif Intell Rev 2021; 54:5469-5540. [PMID: 34092884 PMCID: PMC8171367 DOI: 10.1007/s10462-021-10026-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sine Cosine Algorithm (SCA) is a recent meta-heuristic algorithm inspired by the proprieties of trigonometric sine and cosine functions. Since its introduction by Mirjalili in 2016, SCA has attracted great attention from researchers and has been widely used to solve different optimization problems in several fields. This attention is due to its reasonable execution time, good convergence acceleration rate, and high efficiency compared to several well-regarded optimization algorithms available in the literature. This paper presents a brief overview of the basic SCA and its variants divided into modified, multi-objective, and hybridized versions. Furthermore, the applications of SCA in several domains such as classification, image processing, robot path planning, scheduling, radial distribution networks, and other engineering problems are described. Finally, the paper recommended some potential future research directions for SCA.
Collapse
Affiliation(s)
- Asma Benmessaoud Gabis
- grid.442337.5Ecole nationale Supérieure d’Informatique, Laboratoire des Méthodes de Conception des Systèmes, BP 68M, 16309 Oued-Smar, Alger Algeria
| | - Yassine Meraihi
- LIST Laboratory, University of M’Hamed Bougara Boumerdes, Avenue of Independence, 35000 Boumerdes, Algeria
| | - Seyedali Mirjalili
- grid.449625.80000 0004 4654 2104Center for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006 Australia
| | - Amar Ramdane-Cherif
- grid.12832.3a0000 0001 2323 0229LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, 10-12 Avenue of Europe, 78140 Velizy, France
| |
Collapse
|
23
|
A Fast Image Thresholding Algorithm for Infrared Images Based on Histogram Approximation and Circuit Theory. ALGORITHMS 2020. [DOI: 10.3390/a13090207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Image thresholding is one of the fastest and most effective methods of detecting objects in infrared images. This paper proposes an infrared image thresholding method based on the functional approximation of the histogram. The one-dimensional histogram of the image is approximated to the transient response of a first-order linear circuit. The threshold value for the image segmentation is formulated using combinational analogues of standard operators and principles from the concept of the transient behavior of the first-order linear circuit. The proposed method is tested on infrared images gathered from the standard databases and the experimental results are compared with the existing state-of-the-art infrared image thresholding methods. We realized through the experimental results that our method is well suited to perform infrared image thresholding.
Collapse
|
24
|
Al-qaness MAA, Ewees AA, Fan H, Abd Elaziz M. Optimized Forecasting Method for Weekly Influenza Confirmed Cases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3510. [PMID: 32443409 PMCID: PMC7277888 DOI: 10.3390/ijerph17103510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022]
Abstract
Influenza epidemic is a serious threat to the entire world, which causes thousands of death every year and can be considered as a public health emergency that needs to be more addressed and investigated. Forecasting influenza incidences or confirmed cases is very important to do the necessary policies and plans for governments and health organizations. In this paper, we present an enhanced adaptive neuro-fuzzy inference system (ANFIS) to forecast the weekly confirmed influenza cases in China and the USA using official datasets. To overcome the limitations of the original ANFIS, we use two metaheuristics, called flower pollination algorithm (FPA) and sine cosine algorithm (SCA), to enhance the prediction of the ANFIS. The proposed FPASCA-ANFIS is evaluated using two datasets collected from the CDC and WHO websites. Furthermore, it was compared to some previous state-of-the-art approaches. Experimental results confirmed that the FPASCA-ANFIS outperformed the compared methods using variant measures, including RMSRE, MAPE, MAE, and R 2 .
Collapse
Affiliation(s)
- Mohammed A. A. Al-qaness
- State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
| | - Ahmed A. Ewees
- Department of e-Systems, University of Bisha, Bisha 61922, Saudi Arabia;
- Department of Computer, Damietta University, Damietta 34517, Egypt
| | - Hong Fan
- State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
| | - Mohamed Abd Elaziz
- Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
25
|
Naji Alwerfali HS, A A Al-Qaness M, Abd Elaziz M, Ewees AA, Oliva D, Lu S. Multi-Level Image Thresholding Based on Modified Spherical Search Optimizer and Fuzzy Entropy. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E328. [PMID: 33286101 PMCID: PMC7516786 DOI: 10.3390/e22030328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 11/17/2022]
Abstract
Multi-level thresholding is one of the effective segmentation methods that have been applied in many applications. Traditional methods face challenges in determining the suitable threshold values; therefore, metaheuristic (MH) methods have been adopted to solve these challenges. In general, MH methods had been proposed by simulating natural behaviors of swarm ecosystems, such as birds, animals, and others. The current study proposes an alternative multi-level thresholding method based on a new MH method, a modified spherical search optimizer (SSO). This was performed by using the operators of the sine cosine algorithm (SCA) to enhance the exploitation ability of the SSO. Moreover, Fuzzy entropy is applied as the main fitness function to evaluate the quality of each solution inside the population of the proposed SSOSCA since Fuzzy entropy has established its performance in literature. Several images from the well-known Berkeley dataset were used to test and evaluate the proposed method. The evaluation outcomes approved that SSOSCA showed better performance than several existing methods according to different image segmentation measures.
Collapse
Affiliation(s)
- Husein S Naji Alwerfali
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mohammed A A Al-Qaness
- State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
| | - Mohamed Abd Elaziz
- Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed A Ewees
- Department of Computer, Damietta University, Damietta 34517, Egypt
| | - Diego Oliva
- Depto. de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara C.P. 44100, Jalisco, Mexico
| | - Songfeng Lu
- Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
| |
Collapse
|
26
|
Elaziz MA, Ewees AA, Yousri D, Alwerfali HSN, Awad QA, Lu S, Al-Qaness MAA. An Improved Marine Predators Algorithm With Fuzzy Entropy for Multi-Level Thresholding: Real World Example of COVID-19 CT Image Segmentation. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:125306-125330. [PMID: 34192114 PMCID: PMC8043509 DOI: 10.1109/access.2020.3007928] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/04/2020] [Indexed: 05/04/2023]
Abstract
Medical imaging techniques play a critical role in diagnosing diseases and patient healthcare. They help in treatment, diagnosis, and early detection. Image segmentation is one of the most important steps in processing medical images, and it has been widely used in many applications. Multi-level thresholding (MLT) is considered as one of the simplest and most effective image segmentation techniques. Traditional approaches apply histogram methods; however, these methods face some challenges. In recent years, swarm intelligence methods have been leveraged in MLT, which is considered an NP-hard problem. One of the main drawbacks of the SI methods is when searching for optimum solutions, and some may get stuck in local optima. This because during the run of SI methods, they create random sequences among different operators. In this study, we propose a hybrid SI based approach that combines the features of two SI methods, marine predators algorithm (MPA) and moth-?ame optimization (MFO). The proposed approach is called MPAMFO, in which, the MFO is utilized as a local search method for MPA to avoid trapping at local optima. The MPAMFO is proposed as an MLT approach for image segmentation, which showed excellent performance in all experiments. To test the performance of MPAMFO, two experiments were carried out. The first one is to segment ten natural gray-scale images. The second experiment tested the MPAMFO for a real-world application, such as CT images of COVID-19. Therefore, thirteen CT images were used to test the performance of MPAMFO. Furthermore, extensive comparisons with several SI methods have been implemented to examine the quality and the performance of the MPAMFO. Overall experimental results confirm that the MPAMFO is an efficient MLT approach that approved its superiority over other existing methods.
Collapse
Affiliation(s)
- Mohamed Abd Elaziz
- Department of MathematicsFaculty of ScienceZagazig UniversityZagazig44519Egypt
| | - Ahmed A Ewees
- Department of ComputerDamietta UniversityDamietta34511Egypt
| | - Dalia Yousri
- Electrical Engineering DepartmentFaculty of EngineeringFayoum UniversityFaiyum63514Egypt
| | - Husein S Naji Alwerfali
- School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Qamar A Awad
- Department of MathematicsFaculty of ScienceZagazig UniversityZagazig44519Egypt
| | - Songfeng Lu
- School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Engineering Research Center on Big Data Security, School of Cyber Science and EngineeringHuazhong university of Science and TechnologyWuhan430074China
| | - Mohammed A A Al-Qaness
- State Key Laboratory for Information Engineering in Surveying, Mapping, and Remote SensingWuhan UniversityWuhan430079China
| |
Collapse
|