1
|
El Amrawy AM, Abd El Salam SFED, Ayad SW, Sobhy MA, Awad AM. QTc interval prolongation impact on in-hospital mortality in acute coronary syndromes patients using artificial intelligence and machine learning. Egypt Heart J 2024; 76:149. [PMID: 39535656 PMCID: PMC11561209 DOI: 10.1186/s43044-024-00581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Prediction of mortality in hospitalized patients is a crucial and important problem. Several severity scoring systems over the past few decades and machine learning models for mortality prediction have been developed to predict in-hospital mortality. Our aim in this study was to apply machine learning (ML) algorithms using QTc interval to predict in-hospital mortality in ACS patients and compare them to the validated conventional risk scores. RESULTS This study was retrospective, using supervised learning, and data mining. Out of a cohort of 500 patients admitted to a tertiary care hospital from September 2018 to August 2020, who presented with ACS. Prediction models for in-hospital mortality in ACS patients were developed using 3 ML algorithms. We employed the ensemble learning random forest (RF) model, the Naive Bayes (NB) model and the rule-based projective adaptive resonance theory (PART) model. These models were compared to one another and to two conventional validated risk scores; the Global Registry of Acute Coronary Events (GRACE) risk score and Thrombolysis in Myocardial Infarction (TIMI) risk score. Out of the 500 patients included in our study, 164 (32.8%) patients presented with unstable angina, 148 (29.6%) patients with non-ST-elevation myocardial infarction (NSTEMI) and 188 (37.6%) patients were having ST-elevation myocardial infarction (STEMI). 64 (12.8%) patients died in-hospital and the rest survived. Performance of prediction models was measured in an area under the receiver operating characteristic curve (AUC) ranged from 0.83 to 0.93 using all available variables compared to the GRACE score (0.9 SD 0.05) and the TIMI score (0.75 SD 0.02). Using QTc as a stand-alone variable yielded (0.67 SD 0.02) with a cutoff value 450 using Bazett's formula, whereas using QTc in addition to other variables of personal and clinical data and other ECG variables, the result was 0.8 SD 0.04. Results of RF and NB models were almost the same, but PART model yielded the least results. There was no significant difference of AUC values after replacing the missing values and applying class balancer. CONCLUSIONS The proposed method can effectively predict patients at high risk of in-hospital mortality early in the setting of ACS using only clinical and ECG data. Prolonged QTc interval can be used as a risk predictor of in-hospital mortality in ACS patients.
Collapse
Affiliation(s)
| | | | - Sherif Wagdy Ayad
- Cardiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Ahmed Sobhy
- Cardiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aya Mohamed Awad
- Business Information Systems Department, College of Management and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
2
|
Kasim S, Amir Rudin PNF, Malek S, Aziz F, Wan Ahmad WA, Ibrahim KS, Muhmad Hamidi MH, Raja Shariff RE, Fong AYY, Song C. Data analytics approach for short- and long-term mortality prediction following acute non-ST-elevation myocardial infarction (NSTEMI) and Unstable Angina (UA) in Asians. PLoS One 2024; 19:e0298036. [PMID: 38358964 PMCID: PMC10868757 DOI: 10.1371/journal.pone.0298036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Traditional risk assessment tools often lack accuracy when predicting the short- and long-term mortality following a non-ST-segment elevation myocardial infarction (NSTEMI) or Unstable Angina (UA) in specific population. OBJECTIVE To employ machine learning (ML) and stacked ensemble learning (EL) methods in predicting short- and long-term mortality in Asian patients diagnosed with NSTEMI/UA and to identify the associated features, subsequently evaluating these findings against established risk scores. METHODS We analyzed data from the National Cardiovascular Disease Database for Malaysia (2006-2019), representing a diverse NSTEMI/UA Asian cohort. Algorithm development utilized in-hospital records of 9,518 patients, 30-day data from 7,133 patients, and 1-year data from 7,031 patients. This study utilized 39 features, including demographic, cardiovascular risk, medication, and clinical features. In the development of the stacked EL model, four base learner algorithms were employed: eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF), with the Generalized Linear Model (GLM) serving as the meta learner. Significant features were chosen and ranked using ML feature importance with backward elimination. The predictive performance of the algorithms was assessed using the area under the curve (AUC) as a metric. Validation of the algorithms was conducted against the TIMI for NSTEMI/UA using a separate validation dataset, and the net reclassification index (NRI) was subsequently determined. RESULTS Using both complete and reduced features, the algorithm performance achieved an AUC ranging from 0.73 to 0.89. The top-performing ML algorithm consistently surpassed the TIMI risk score for in-hospital, 30-day, and 1-year predictions (with AUC values of 0.88, 0.88, and 0.81, respectively, all p < 0.001), while the TIMI scores registered significantly lower at 0.55, 0.54, and 0.61. This suggests the TIMI score tends to underestimate patient mortality risk. The net reclassification index (NRI) of the best ML algorithm for NSTEMI/UA patients across these periods yielded an NRI between 40-60% (p < 0.001) relative to the TIMI NSTEMI/UA risk score. Key features identified for both short- and long-term mortality included age, Killip class, heart rate, and Low-Molecular-Weight Heparin (LMWH) administration. CONCLUSIONS In a broad multi-ethnic population, ML approaches outperformed conventional TIMI scoring in classifying patients with NSTEMI and UA. ML allows for the precise identification of unique characteristics within individual Asian populations, improving the accuracy of mortality predictions. Continuous development, testing, and validation of these ML algorithms holds the promise of enhanced risk stratification, thereby revolutionizing future management strategies and patient outcomes.
Collapse
Affiliation(s)
- Sazzli Kasim
- Cardiology Department, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
- Cardiac Vascular and Lung Research Institute, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
- National Heart Association of Malaysia, Heart House, Kuala Lumpur, Malaysia
| | | | - Sorayya Malek
- Faculty of Science, Institute of Biological Sciences, University Malaya, Kuala Lumpur, Malaysia
| | - Firdaus Aziz
- School of Liberal Studies, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Azman Wan Ahmad
- National Heart Association of Malaysia, Heart House, Kuala Lumpur, Malaysia
- Division of Cardiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
| | - Khairul Shafiq Ibrahim
- Cardiology Department, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
- Cardiac Vascular and Lung Research Institute, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
- National Heart Association of Malaysia, Heart House, Kuala Lumpur, Malaysia
| | - Muhammad Hanis Muhmad Hamidi
- Cardiology Department, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
- Cardiac Vascular and Lung Research Institute, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
- National Heart Association of Malaysia, Heart House, Kuala Lumpur, Malaysia
| | - Raja Ezman Raja Shariff
- Cardiology Department, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
- Cardiac Vascular and Lung Research Institute, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
- National Heart Association of Malaysia, Heart House, Kuala Lumpur, Malaysia
| | - Alan Yean Yip Fong
- National Heart Association of Malaysia, Heart House, Kuala Lumpur, Malaysia
- Department of Cardiology, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| | - Cheen Song
- Faculty of Science, Institute of Biological Sciences, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Hajare S, Rewatkar R, Reddy KTV. Machine learning based prediction model for acute coronary syndrome using biomarker. AIP CONFERENCE PROCEEDINGS 2024; 3188:080024. [DOI: 10.1063/5.0240234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Jahandideh S, Ozavci G, Sahle BW, Kouzani AZ, Magrabi F, Bucknall T. Evaluation of machine learning-based models for prediction of clinical deterioration: A systematic literature review. Int J Med Inform 2023; 175:105084. [PMID: 37156168 DOI: 10.1016/j.ijmedinf.2023.105084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Early identification of patients at risk of deterioration can prevent life-threatening adverse events and shorten length of stay. Although there are numerous models applied to predict patient clinical deterioration, most are based on vital signs and have methodological shortcomings that are not able to provide accurate estimates of deterioration risk. The aim of this systematic review is to examine the effectiveness, challenges, and limitations of using machine learning (ML) techniques to predict patient clinical deterioration in hospital settings. METHODS A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and meta-Analyses (PRISMA) guidelines using EMBASE, MEDLINE Complete, CINAHL Complete, and IEEExplore databases. Citation searching was carried out for studies that met inclusion criteria. Two reviewers used the inclusion/exclusion criteria to independently screen studies and extract data. To address any discrepancies in the screening process, the two reviewers discussed their findings and a third reviewer was consulted as needed to reach a consensus. Studies focusing on use of ML in predicting patient clinical deterioration that were published from inception to July 2022 were included. RESULTS A total of 29 primary studies that evaluated ML models to predict patient clinical deterioration were identified. After reviewing these studies, we found that 15 types of ML techniques have been employed to predict patient clinical deterioration. While six studies used a single technique exclusively, several others utilised a combination of classical techniques, unsupervised and supervised learning, as well as other novel techniques. Depending on which ML model was applied and the type of input features, ML models predicted outcomes with an area under the curve from 0.55 to 0.99. CONCLUSIONS Numerous ML methods have been employed to automate the identification of patient deterioration. Despite these advancements, there is still a need for further investigation to examine the application and effectiveness of these methods in real-world situations.
Collapse
Affiliation(s)
- Sepideh Jahandideh
- School of Nursing and Midwifery, Deakin University, Geelong, Victoria 3220, Australia.
| | - Guncag Ozavci
- School of Nursing and Midwifery, Deakin University, Geelong, Victoria 3220, Australia; Centre for Quality and Patient Safety Research- Alfred Health Partnership, Institute for Health Transformation, Deakin University, Geelong, Victoria 3220, Australia
| | - Berhe W Sahle
- School of Nursing and Midwifery, Deakin University, Geelong, Victoria 3220, Australia; Centre for Quality and Patient Safety Research- Alfred Health Partnership, Institute for Health Transformation, Deakin University, Geelong, Victoria 3220, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Farah Magrabi
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Tracey Bucknall
- School of Nursing and Midwifery, Deakin University, Geelong, Victoria 3220, Australia; Centre for Quality and Patient Safety Research- Alfred Health Partnership, Institute for Health Transformation, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
5
|
Suri JS, Bhagawati M, Paul S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Paraskevas KI, Laird JR, Johri AM, Saba L, Kalra M. Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Comput Biol Med 2022; 142:105204. [PMID: 35033879 DOI: 10.1016/j.compbiomed.2021.105204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/09/2023]
|
6
|
Kavitha T, Hemalatha S, Mownika S, Priya GM, Vigashini J. Review on Cardio Vascular Disease Prediction Using Machine Learning. 2022 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI) 2022:1-4. [DOI: 10.1109/iccci54379.2022.9740953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- T. Kavitha
- Kongu Engineering College Perundurai,Department of Computer Applications,Erode,Tamil Nadu,INDIA
| | - S. Hemalatha
- Kongu Engineering College Perundurai,Department of Computer Applications,Erode,Tamil Nadu,INDIA
| | - S. Mownika
- Kongu Engineering College Perundurai,Department of Computer Applications,Erode,Tamil Nadu,INDIA
| | - G. Mohana Priya
- Kongu Engineering College Perundurai,Department of Computer Applications,Erode,Tamil Nadu,INDIA
| | - J.K. Vigashini
- Kongu Engineering College Perundurai,Department of Computer Applications,Erode,Tamil Nadu,INDIA
| |
Collapse
|
7
|
Stewart J, Lu J, Goudie A, Bennamoun M, Sprivulis P, Sanfillipo F, Dwivedi G. Applications of machine learning to undifferentiated chest pain in the emergency department: A systematic review. PLoS One 2021; 16:e0252612. [PMID: 34428208 PMCID: PMC8384172 DOI: 10.1371/journal.pone.0252612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chest pain is amongst the most common reason for presentation to the emergency department (ED). There are many causes of chest pain, and it is important for the emergency physician to quickly and accurately diagnose life threatening causes such as acute myocardial infarction (AMI). Multiple clinical decision tools have been developed to assist clinicians in risk stratifying patients with chest. There is growing recognition that machine learning (ML) will have a significant impact on the practice of medicine in the near future and may assist with diagnosis and risk stratification. This systematic review aims to evaluate how ML has been applied to adults presenting to the ED with undifferentiated chest pain and assess if ML models show improved performance when compared to physicians or current risk stratification techniques. METHODS AND FINDINGS We conducted a systematic review of journal articles that applied a ML technique to an adult patient presenting to an emergency department with undifferentiated chest pain. Multiple databases were searched from inception through to November 2020. In total, 3361 articles were screened, and 23 articles were included. We did not conduct a metanalysis due to a high level of heterogeneity between studies in both their methods, and reporting. The most common primary outcomes assessed were diagnosis of acute myocardial infarction (AMI) (12 studies), and prognosis of major adverse cardiovascular event (MACE) (6 studies). There were 14 retrospective studies and 5 prospective studies. Four studies reported the development of a machine learning model retrospectively then tested it prospectively. The most common machine learning methods used were artificial neural networks (14 studies), random forest (6 studies), support vector machine (5 studies), and gradient boosting (2 studies). Multiple studies achieved high accuracy in both the diagnosis of AMI in the ED setting, and in predicting mortality and composite outcomes over various timeframes. ML outperformed existing risk stratification scores in all cases, and physicians in three out of four cases. The majority of studies were single centre, retrospective, and without prospective or external validation. There were only 3 studies that were considered low risk of bias and had low applicability concerns. Two studies reported integrating the ML model into clinical practice. CONCLUSIONS Research on applications of ML for undifferentiated chest pain in the ED has been ongoing for decades. ML has been reported to outperform emergency physicians and current risk stratification tools to diagnose AMI and predict MACE but has rarely been integrated into practice. Many studies assessing the use of ML in undifferentiated chest pain in the ED have a high risk of bias. It is important that future studies make use of recently developed standardised ML reporting guidelines, register their protocols, and share their datasets and code. Future work is required to assess the impact of ML model implementation on clinical decision making, patient orientated outcomes, and patient and physician acceptability. TRIAL REGISTRATION International Prospective Register of Systematic Reviews registration number: CRD42020184977.
Collapse
Affiliation(s)
- Jonathon Stewart
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Juan Lu
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Adrian Goudie
- Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Mohammed Bennamoun
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Peter Sprivulis
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Health Western Australia, East Perth, Western Australia, Australia
| | - Frank Sanfillipo
- School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia
| | - Girish Dwivedi
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|