1
|
Lucho S, Naemi R, Castañeda B, Treuillet S. Can Deep Learning Wound Segmentation Algorithms Developed for a Dataset Be Effective for Another Dataset? A Specific Focus on Diabetic Foot Ulcers. IEEE ACCESS 2024; 12:173824-173835. [DOI: 10.1109/access.2024.3502467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Stuardo Lucho
- Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Roozbeh Naemi
- Centre for Human Movement and Rehabilitation, School of Health and Society, University of Salford, Manchester, U.K
| | - Benjamin Castañeda
- Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
| | | |
Collapse
|
2
|
Guo X, Yi W, Dong L, Kong L, Liu M, Zhao Y, Hui M, Chu X. Multi-Class Wound Classification via High and Low-Frequency Guidance Network. Bioengineering (Basel) 2023; 10:1385. [PMID: 38135976 PMCID: PMC10740846 DOI: 10.3390/bioengineering10121385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Wound image classification is a crucial preprocessing step to many intelligent medical systems, e.g., online diagnosis and smart medical. Recently, Convolutional Neural Network (CNN) has been widely applied to the classification of wound images and obtained promising performance to some extent. Unfortunately, it is still challenging to classify multiple wound types due to the complexity and variety of wound images. Existing CNNs usually extract high- and low-frequency features at the same convolutional layer, which inevitably causes information loss and further affects the accuracy of classification. To this end, we propose a novel High and Low-frequency Guidance Network (HLG-Net) for multi-class wound classification. To be specific, HLG-Net contains two branches: High-Frequency Network (HF-Net) and Low-Frequency Network (LF-Net). We employ pre-trained models ResNet and Res2Net as the feature backbone of the HF-Net, which makes the network capture the high-frequency details and texture information of wound images. To extract much low-frequency information, we utilize a Multi-Stream Dilation Convolution Residual Block (MSDCRB) as the backbone of the LF-Net. Moreover, a fusion module is proposed to fully explore informative features at the end of these two separate feature extraction branches, and obtain the final classification result. Extensive experiments demonstrate that HLG-Net can achieve maximum accuracy of 98.00%, 92.11%, and 82.61% in two-class, three-class, and four-class wound image classifications, respectively, which outperforms the previous state-of-the-art methods.
Collapse
Affiliation(s)
- Xiuwen Guo
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (W.Y.); (L.K.); (M.L.); (Y.Z.); (M.H.); (X.C.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| | - Weichao Yi
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (W.Y.); (L.K.); (M.L.); (Y.Z.); (M.H.); (X.C.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| | - Liquan Dong
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (W.Y.); (L.K.); (M.L.); (Y.Z.); (M.H.); (X.C.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Lingqin Kong
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (W.Y.); (L.K.); (M.L.); (Y.Z.); (M.H.); (X.C.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Ming Liu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (W.Y.); (L.K.); (M.L.); (Y.Z.); (M.H.); (X.C.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Yuejin Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (W.Y.); (L.K.); (M.L.); (Y.Z.); (M.H.); (X.C.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Mei Hui
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (W.Y.); (L.K.); (M.L.); (Y.Z.); (M.H.); (X.C.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| | - Xuhong Chu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (W.Y.); (L.K.); (M.L.); (Y.Z.); (M.H.); (X.C.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
3
|
Kairys A, Pauliukiene R, Raudonis V, Ceponis J. Towards Home-Based Diabetic Foot Ulcer Monitoring: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:3618. [PMID: 37050678 PMCID: PMC10099334 DOI: 10.3390/s23073618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
It is considered that 1 in 10 adults worldwide have diabetes. Diabetic foot ulcers are some of the most common complications of diabetes, and they are associated with a high risk of lower-limb amputation and, as a result, reduced life expectancy. Timely detection and periodic ulcer monitoring can considerably decrease amputation rates. Recent research has demonstrated that computer vision can be used to identify foot ulcers and perform non-contact telemetry by using ulcer and tissue area segmentation. However, the applications are limited to controlled lighting conditions, and expert knowledge is required for dataset annotation. This paper reviews the latest publications on the use of artificial intelligence for ulcer area detection and segmentation. The PRISMA methodology was used to search for and select articles, and the selected articles were reviewed to collect quantitative and qualitative data. Qualitative data were used to describe the methodologies used in individual studies, while quantitative data were used for generalization in terms of dataset preparation and feature extraction. Publicly available datasets were accounted for, and methods for preprocessing, augmentation, and feature extraction were evaluated. It was concluded that public datasets can be used to form a bigger, more diverse datasets, and the prospects of wider image preprocessing and the adoption of augmentation require further research.
Collapse
Affiliation(s)
- Arturas Kairys
- Automation Department, Electrical and Electronics Faculty, Kaunas University of Technology, 51368 Kaunas, Lithuania
| | - Renata Pauliukiene
- Department of Endocrinology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Vidas Raudonis
- Automation Department, Electrical and Electronics Faculty, Kaunas University of Technology, 51368 Kaunas, Lithuania
| | - Jonas Ceponis
- Institute of Endocrinology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
4
|
Eldem H, Ülker E, Yaşar Işıklı O. Encoder–decoder semantic segmentation models for pressure wound images. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2022.2163531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hüseyin Eldem
- Vocational School of Technical Sciences, Computer Technologies Department, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Erkan Ülker
- Faculty of Engineering and Natural Sciences, Department of Computer Engineering, Konya Technical University, Konya, Turkey
| | - Osman Yaşar Işıklı
- Karaman Education and Research Hospital, Vascular Surgery Department, Karaman, Turkey
| |
Collapse
|
5
|
Hernandez-Guedes A, Arteaga-Marrero N, Villa E, Callico GM, Ruiz-Alzola J. Feature Ranking by Variational Dropout for Classification Using Thermograms from Diabetic Foot Ulcers. SENSORS (BASEL, SWITZERLAND) 2023; 23:757. [PMID: 36679552 PMCID: PMC9867159 DOI: 10.3390/s23020757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Diabetes mellitus presents a high prevalence around the world. A common and long-term derived complication is diabetic foot ulcers (DFUs), which have a global prevalence of roughly 6.3%, and a lifetime incidence of up to 34%. Infrared thermograms, covering the entire plantar aspect of both feet, can be employed to monitor the risk of developing a foot ulcer, because diabetic patients exhibit an abnormal pattern that may indicate a foot disorder. In this study, the publicly available INAOE dataset composed of thermogram images of healthy and diabetic subjects was employed to extract relevant features aiming to establish a set of state-of-the-art features that efficiently classify DFU. This database was extended and balanced by fusing it with private local thermograms from healthy volunteers and generating synthetic data via synthetic minority oversampling technique (SMOTE). State-of-the-art features were extracted using two classical approaches, LASSO and random forest, as well as two variational deep learning (DL)-based ones: concrete and variational dropout. Then, the most relevant features were detected and ranked. Subsequently, the extracted features were employed to classify subjects at risk of developing an ulcer using as reference a support vector machine (SVM) classifier with a fixed hyperparameter configuration to evaluate the robustness of the selected features. The new set of features extracted considerably differed from those currently considered state-of-the-art but provided a fair performance. Among the implemented extraction approaches, the variational DL ones, particularly the concrete dropout, performed the best, reporting an F1 score of 90% using the aforementioned SVM classifier. In comparison with features previously considered as the state-of-the-art, approximately 15% better performance was achieved for classification.
Collapse
Affiliation(s)
- Abian Hernandez-Guedes
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Microelectrónica Aplicada (IUMA), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Natalia Arteaga-Marrero
- Grupo Tecnología Médica IACTEC, Instituto de Astrofísica de Canarias (IAC), 38205 San Cristóbal de La Laguna, Spain
| | - Enrique Villa
- Grupo Tecnología Médica IACTEC, Instituto de Astrofísica de Canarias (IAC), 38205 San Cristóbal de La Laguna, Spain
| | - Gustavo M. Callico
- Instituto Universitario de Microelectrónica Aplicada (IUMA), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Juan Ruiz-Alzola
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Grupo Tecnología Médica IACTEC, Instituto de Astrofísica de Canarias (IAC), 38205 San Cristóbal de La Laguna, Spain
- Departamento de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|