1
|
Kuanr M, Mohapatra P, Mittal S, Maindarkar M, Fouda MM, Saba L, Saxena S, Suri JS. Recommender System for the Efficient Treatment of COVID-19 Using a Convolutional Neural Network Model and Image Similarity. Diagnostics (Basel) 2022; 12:2700. [PMID: 36359545 PMCID: PMC9689970 DOI: 10.3390/diagnostics12112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 09/09/2023] Open
Abstract
Background: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient. Methodology: This study uses a Convolutional neural network (CNN) model for the feature extraction of the images and discovers the most similar patients. The input queries patients from the hospital database with similar chest X-ray images. It uses a similarity metric for the similarity computation of the images. Results: This methodology recommends the doctors, medicines, and resources associated with similar patients to a COVID-19 patients being admitted to the hospital. The performance of the proposed RS is verified with five different feature extraction CNN models and four similarity measures. The proposed RS with a ResNet-50 CNN feature extraction model and Maxwell-Boltzmann similarity is found to be a proper framework for treatment recommendation with a mean average precision of more than 0.90 for threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more than 0.95. Conclusions: Overall, an RS with a CNN model and image similarity is proven as an efficient tool for the proper management of resources during the peak period of pandemics and can be adopted in clinical settings.
Collapse
Affiliation(s)
- Madhusree Kuanr
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | | | - Sanchi Mittal
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95661, USA
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09123 Cagliari, Italy
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95661, USA
- Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| |
Collapse
|
2
|
Yang Z, Chen M, Kazemimoghadam M, Ma L, Stojadinovic S, Timmerman R, Dan T, Wardak Z, Lu W, Gu X. Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation. Phys Med Biol 2022; 67:10.1088/1361-6560/ac4667. [PMID: 34952535 PMCID: PMC8858586 DOI: 10.1088/1361-6560/ac4667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/24/2021] [Indexed: 01/21/2023]
Abstract
Stereotactic radiosurgery (SRS) is now the standard of care for brain metastases (BMs) patients. The SRS treatment planning process requires precise target delineation, which in clinical workflow for patients with multiple (>4) BMs (mBMs) could become a pronounced time bottleneck. Our group has developed an automated BMs segmentation platform to assist in this process. The accuracy of the auto-segmentation, however, is influenced by the presence of false-positive segmentations, mainly caused by the injected contrast during MRI acquisition. To address this problem and further improve the segmentation performance, a deep-learning and radiomics ensemble classifier was developed to reduce the false-positive rate in segmentations. The proposed model consists of a Siamese network and a radiomic-based support vector machine (SVM) classifier. The 2D-based Siamese network contains a pair of parallel feature extractors with shared weights followed by a single classifier. This architecture is designed to identify the inter-class difference. On the other hand, the SVM model takes the radiomic features extracted from 3D segmentation volumes as the input for twofold classification, either a false-positive segmentation or a true BM. Lastly, the outputs from both models create an ensemble to generate the final label. The performance of the proposed model in the segmented mBMs testing dataset reached the accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under the curve of 0.91, 0.96, 0.90 and 0.93, respectively. After integrating the proposed model into the original segmentation platform, the average segmentation false negative rate (FNR) and the false positive over the union (FPoU) were 0.13 and 0.09, respectively, which preserved the initial FNR (0.07) and significantly improved the FPoU (0.55). The proposed method effectively reduced the false-positive rate in the BMs raw segmentations indicating that the integration of the proposed ensemble classifier into the BMs segmentation platform provides a beneficial tool for mBMs SRS management.
Collapse
Affiliation(s)
- Zi Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Mingli Chen
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Mahdieh Kazemimoghadam
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Lin Ma
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Robert Timmerman
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Tu Dan
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Zabi Wardak
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Weiguo Lu
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Xuejun Gu
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| |
Collapse
|
3
|
Machine Learning Based on Morphological Features Enables Classification of Primary Intestinal T-Cell Lymphomas. Cancers (Basel) 2021; 13:cancers13215463. [PMID: 34771625 PMCID: PMC8582405 DOI: 10.3390/cancers13215463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to investigate the feasibility of using machine learning techniques based on morphological features in classifying two subtypes of primary intestinal T-cell lymphomas (PITLs) defined according to the WHO criteria: monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) versus intestinal T-cell lymphoma, not otherwise specified (ITCL-NOS), which is considered a major challenge for pathological diagnosis. A total of 40 histopathological whole-slide images (WSIs) from 40 surgically resected PITL cases were used as the dataset for model training and testing. A deep neural network was trained to detect and segment the nuclei of lymphocytes. Quantitative nuclear morphometrics were further computed from these predicted contours. A decision-tree-based machine learning algorithm, XGBoost, was then trained to classify PITL cases into two disease subtypes using these nuclear morphometric features. The deep neural network achieved an average precision of 0.881 in the cell segmentation work. In terms of classifying MEITL versus ITCL-NOS, the XGBoost model achieved an area under receiver operating characteristic curve (AUC) of 0.966. Our research demonstrated an accurate, human-interpretable approach to using machine learning algorithms for reducing the high dimensionality of image features and classifying T cell lymphomas that present challenges in morphologic diagnosis. The quantitative nuclear morphometric features may lead to further discoveries concerning the relationship between cellular phenotype and disease status.
Collapse
|
4
|
Abousamra S, Belinsky D, Van Arnam J, Allard F, Yee E, Gupta R, Kurc T, Samaras D, Saltz J, Chen C. Multi-Class Cell Detection Using Spatial Context Representation. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION 2021; 2021:3985-3994. [PMID: 38783989 PMCID: PMC11114143 DOI: 10.1109/iccv48922.2021.00397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In digital pathology, both detection and classification of cells are important for automatic diagnostic and prognostic tasks. Classifying cells into subtypes, such as tumor cells, lymphocytes or stromal cells is particularly challenging. Existing methods focus on morphological appearance of individual cells, whereas in practice pathologists often infer cell classes through their spatial context. In this paper, we propose a novel method for both detection and classification that explicitly incorporates spatial contextual information. We use the spatial statistical function to describe local density in both a multi-class and a multi-scale manner. Through representation learning and deep clustering techniques, we learn advanced cell representation with both appearance and spatial context. On various benchmarks, our method achieves better performance than state-of-the-arts, especially on the classification task. We also create a new dataset for multi-class cell detection and classification in breast cancer and we make both our code and data publicly available.
Collapse
Affiliation(s)
| | | | | | | | - Eric Yee
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Tahsin Kurc
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Joel Saltz
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Chao Chen
- Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Zormpas-Petridis K, Noguera R, Ivankovic DK, Roxanis I, Jamin Y, Yuan Y. SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images. Front Oncol 2021; 10:586292. [PMID: 33552964 PMCID: PMC7855703 DOI: 10.3389/fonc.2020.586292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global context features reflecting the rich tumor morphological heterogeneity. SuperHistopath efficiently combines i) a segmentation approach using the linear iterative clustering (SLIC) superpixels algorithm applied directly on the whole-slide images at low resolution (5x magnification) to adhere to region boundaries and form homogeneous spatial units at tissue-level, followed by ii) classification of superpixels using a convolution neural network (CNN). To demonstrate how versatile SuperHistopath was in accomplishing histopathology tasks, we classified tumor tissue, stroma, necrosis, lymphocytes clusters, differentiating regions, fat, hemorrhage and normal tissue, in 127 melanomas, 23 triple-negative breast cancers, and 73 samples from transgenic mouse models of high-risk childhood neuroblastoma with high accuracy (98.8%, 93.1% and 98.3% respectively). Furthermore, SuperHistopath enabled discovery of significant differences in tumor phenotype of neuroblastoma mouse models emulating genomic variants of high-risk disease, and stratification of melanoma patients (high ratio of lymphocyte-to-tumor superpixels (p = 0.015) and low stroma-to-tumor ratio (p = 0.028) were associated with a favorable prognosis). Finally, SuperHistopath is efficient for annotation of ground-truth datasets (as there is no need of boundary delineation), training and application (~5 min for classifying a whole-slide image and as low as ~30 min for network training). These attributes make SuperHistopath particularly attractive for research in rich datasets and could also facilitate its adoption in the clinic to accelerate pathologist workflow with the quantification of phenotypes, predictive/prognosis markers.
Collapse
Affiliation(s)
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain.,Low Prevalence Tumors, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ioannis Roxanis
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
6
|
Fu Y, Xue P, Ji H, Cui W, Dong E. Deep model with Siamese network for viable and necrotic tumor regions assessment in osteosarcoma. Med Phys 2020; 47:4895-4905. [DOI: 10.1002/mp.14397] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yu Fu
- Department of Mechanical Electrical and Information Engineering Shandong University Weihai264209 China
| | - Peng Xue
- Department of Mechanical Electrical and Information Engineering Shandong University Weihai264209 China
| | - Huizhong Ji
- Department of Mechanical Electrical and Information Engineering Shandong University Weihai264209 China
| | - Wentao Cui
- Department of Mechanical Electrical and Information Engineering Shandong University Weihai264209 China
| | - Enqing Dong
- Department of Mechanical Electrical and Information Engineering Shandong University Weihai264209 China
| |
Collapse
|
7
|
Zormpas-Petridis K, Failmezger H, Raza SEA, Roxanis I, Jamin Y, Yuan Y. Superpixel-Based Conditional Random Fields (SuperCRF): Incorporating Global and Local Context for Enhanced Deep Learning in Melanoma Histopathology. Front Oncol 2019; 9:1045. [PMID: 31681583 PMCID: PMC6798642 DOI: 10.3389/fonc.2019.01045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
Computational pathology-based cell classification algorithms are revolutionizing the study of the tumor microenvironment and can provide novel predictive/prognosis biomarkers crucial for the delivery of precision oncology. Current algorithms used on hematoxylin and eosin slides are based on individual cell nuclei morphology with limited local context features. Here, we propose a novel multi-resolution hierarchical framework (SuperCRF) inspired by the way pathologists perceive regional tissue architecture to improve cell classification and demonstrate its clinical applications. We develop SuperCRF by training a state-of-art deep learning spatially constrained- convolution neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20×) H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently, a conditional random field (CRF) by combining cellular neighborhood with tumor regional classification from lower resolution images (5, 1.25×) given by a superpixel-based machine learning framework. SuperCRF led to an 11.85% overall improvement in the accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that (i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment (p = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to p = 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma. SuperCRF improves cell classification by introducing global and local context-based information and can be implemented in combination with any single-cell classifier. SuperCRF provides valuable tools to study the tumor microenvironment and identify predictors of survival and response to therapy.
Collapse
Affiliation(s)
- Konstantinos Zormpas-Petridis
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Trust, Surrey, United Kingdom
| | - Henrik Failmezger
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Shan E Ahmed Raza
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ioannis Roxanis
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Trust, Surrey, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
8
|
Lotfollahi M, Berisha S, Saadatifard L, Montier L, Žiburkus J, Mayerich D. Three-dimensional GPU-accelerated active contours for automated localization of cells in large images. PLoS One 2019; 14:e0215843. [PMID: 31173591 PMCID: PMC6555506 DOI: 10.1371/journal.pone.0215843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/09/2019] [Indexed: 01/17/2023] Open
Abstract
Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. Successful cell segmentation algorithms rely identifying seed points, and are highly sensitive to variablility in cell size. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional contour evolution that extends previous work on fast two-dimensional snakes. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell localization tasks when compared to existing methods on large 3D brain images.
Collapse
Affiliation(s)
- Mahsa Lotfollahi
- Department of Electrical and Computer engineering, University of Houston, Houston, TX, United States of America
| | - Sebastian Berisha
- Department of Electrical and Computer engineering, University of Houston, Houston, TX, United States of America
| | - Leila Saadatifard
- Department of Electrical and Computer engineering, University of Houston, Houston, TX, United States of America
| | - Laura Montier
- Department of Biology and Biochemistry, University of Houston, TX, United States of America
| | - Jokūbas Žiburkus
- Department of Biology and Biochemistry, University of Houston, TX, United States of America
| | - David Mayerich
- Department of Electrical and Computer engineering, University of Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|