1
|
Brown BM, Boyne AMH, Hassan AM, Allam AK, Cotton RJ, Haneef Z. Computer vision for automated seizure detection and classification: A systematic review. Epilepsia 2024; 65:1176-1202. [PMID: 38426252 DOI: 10.1111/epi.17926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Computer vision (CV) shows increasing promise as an efficient, low-cost tool for video seizure detection and classification. Here, we provide an overview of the fundamental concepts needed to understand CV and summarize the structure and performance of various model architectures used in video seizure analysis. We conduct a systematic literature review of the PubMed, Embase, and Web of Science databases from January 1, 2000 to September 15, 2023, to identify the strengths and limitations of CV seizure analysis methods and discuss the utility of these models when applied to different clinical seizure phenotypes. Reviews, nonhuman studies, and those with insufficient or poor quality data are excluded from the review. Of the 1942 records identified, 45 meet inclusion criteria and are analyzed. We conclude that the field has shown tremendous growth over the past 2 decades, leading to several model architectures with impressive accuracy and efficiency. The rapid and scalable detection offered by CV models holds the potential to reduce sudden unexpected death in epilepsy and help alleviate resource limitations in epilepsy monitoring units. However, a lack of standardized, thorough validation measures and concerns about patient privacy remain important obstacles for widespread acceptance and adoption. Investigation into the performance of models across varied datasets from clinical and nonclinical environments is an essential area for further research.
Collapse
Affiliation(s)
- Brandon M Brown
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Aidan M H Boyne
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Adel M Hassan
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony K Allam
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - R James Cotton
- Shirley Ryan Ability Lab, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
2
|
Rai P, Knight A, Hiillos M, Kertész C, Morales E, Terney D, Larsen SA, Østerkjerhuus T, Peltola J, Beniczky S. Automated analysis and detection of epileptic seizures in video recordings using artificial intelligence. Front Neuroinform 2024; 18:1324981. [PMID: 38558825 PMCID: PMC10978750 DOI: 10.3389/fninf.2024.1324981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Automated seizure detection promises to aid in the prevention of SUDEP and improve the quality of care by assisting in epilepsy diagnosis and treatment adjustment. Methods In this phase 2 exploratory study, the performance of a contactless, marker-free, video-based motor seizure detection system is assessed, considering video recordings of patients (age 0-80 years), in terms of sensitivity, specificity, and Receiver Operating Characteristic (ROC) curves, with respect to video-electroencephalographic monitoring (VEM) as the medical gold standard. Detection performances of five categories of motor epileptic seizures (tonic-clonic, hyperkinetic, tonic, unclassified motor, automatisms) and psychogenic non-epileptic seizures (PNES) with a motor behavioral component lasting for >10 s were assessed independently at different detection thresholds (rather than as a categorical classification problem). A total of 230 patients were recruited in the study, of which 334 in-scope (>10 s) motor seizures (out of 1,114 total seizures) were identified by VEM reported from 81 patients. We analyzed both daytime and nocturnal recordings. The control threshold was evaluated at a range of values to compare the sensitivity (n = 81 subjects with seizures) and false detection rate (FDR) (n = all 230 subjects). Results At optimal thresholds, the performance of seizure groups in terms of sensitivity (CI) and FDR/h (CI): tonic-clonic- 95.2% (82.4, 100%); 0.09 (0.077, 0.103), hyperkinetic- 92.9% (68.5, 98.7%); 0.64 (0.59, 0.69), tonic- 78.3% (64.4, 87.7%); 5.87 (5.51, 6.23), automatism- 86.7% (73.5, 97.7%); 3.34 (3.12, 3.58), unclassified motor seizures- 78% (65.4, 90.4%); 4.81 (4.50, 5.14), and PNES- 97.7% (97.7, 100%); 1.73 (1.61, 1.86). A generic threshold recommended for all motor seizures under study asserted 88% sensitivity and 6.48 FDR/h. Discussion These results indicate an achievable performance for major motor seizure detection that is clinically applicable for use as a seizure screening solution in diagnostic workflows.
Collapse
Affiliation(s)
| | - Andrew Knight
- Neuro Event Labs, Tampere, Finland
- Department of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | | | - Daniella Terney
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
| | - Sidsel Armand Larsen
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
| | - Tim Østerkjerhuus
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jukka Peltola
- Department of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Neurology, Tampere University Hospital, Tampere, Finland
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Martin JR, Gabriel P, Gold J, Haas R, Davis S, Gonda D, Sharpe C, Wilson S, Nierenberg N, Scheuer M, Wang S. Optical Flow Estimation Improves Automated Seizure Detection in Neonatal EEG. J Clin Neurophysiol 2022; 39:235-239. [PMID: 32810002 PMCID: PMC7887141 DOI: 10.1097/wnp.0000000000000767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Existing automated seizure detection algorithms report sensitivities between 43% and 77% and specificities between 56% and 90%. The algorithms suffer from false alarms when applied to neonatal EEG because of the high degree of nurse handling and rhythmic patting used to soothe neonates. Computer vision technology that quantifies movement in real time could distinguish artifactual motion and improve automated neonatal seizure detection algorithms. METHODS The authors used video EEG recordings from 43 neonates undergoing monitoring for seizures as part of the NEOLEV2 clinical trial. The Persyst neonatal automated seizure detection algorithm ran in real time during study EEG acquisitions. Computer vision algorithms were applied to extract detailed accounts of artifactual movement of the neonate or people near the neonate though dense optical flow estimation. RESULTS Using the methods mentioned above, 197 periods of patting activity were identified and quantified, of which 45 generated false-positive automated seizure detection events. A binary patting detection algorithm was trained with a subset of 470 event videos. This supervised detection algorithm was applied to a testing subset of 187 event videos with 8 false-positive events, which resulted in a 24% reduction in false-positive automated seizure detections and a 50% reduction in false-positive events caused by neonatal care patting, while maintaining 11 of 12 true-positive seizure detection events. CONCLUSIONS This work presents a novel approach to improving automated seizure detection algorithms used during neonatal video EEG monitoring. This artifact detection mechanism can improve the ability of a seizure detector algorithm to distinguish between artifact and true seizure activity.
Collapse
Affiliation(s)
- Joel R Martin
- Department of Electrical Engineering, University of California, San Diego, La Jolla, CA
| | - Paolo Gabriel
- Department of Electrical Engineering, University of California, San Diego, La Jolla, CA
| | - Jeffrey Gold
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Richard Haas
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Sue Davis
- Auckland District Health Board, Auckland, New Zealand
| | - David Gonda
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Cia Sharpe
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | | | | | | | - Sonya Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
4
|
Ryvlin P, Cammoun L, Hubbard I, Ravey F, Beniczky S, Atienza D. Noninvasive detection of focal seizures in ambulatory patients. Epilepsia 2020; 61 Suppl 1:S47-S54. [PMID: 32484920 PMCID: PMC7754288 DOI: 10.1111/epi.16538] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 02/02/2023]
Abstract
Reliably detecting focal seizures without secondary generalization during daily life activities, chronically, using convenient portable or wearable devices, would offer patients with active epilepsy a number of potential benefits, such as providing more reliable seizure count to optimize treatment and seizure forecasting, and triggering alarms to promote safeguarding interventions. However, no generic solution is currently available to reach these objectives. A number of biosignals are sensitive to specific forms of focal seizures, in particular heart rate and its variability for seizures affecting the neurovegetative system, and accelerometry for those responsible for prominent motor activity. However, most studies demonstrate high rates of false detection or poor sensitivity, with only a minority of patients benefiting from acceptable levels of accuracy. To tackle this challenging issue, several lines of technological progress are envisioned, including multimodal biosensing with cross‐modal analytics, a combination of embedded and distributed self‐aware machine learning, and ultra–low‐power design to enable appropriate autonomy of such sophisticated portable solutions.
Collapse
Affiliation(s)
- Philippe Ryvlin
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - Leila Cammoun
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - Ilona Hubbard
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - France Ravey
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - David Atienza
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland.,Embedded Systems Laboratory, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Loddo G, Lopez R, Cilea R, Dauvilliers Y, Provini F. Disorders of Arousal in adults: new diagnostic tools for clinical practice. SLEEP SCIENCE AND PRACTICE 2019. [DOI: 10.1186/s41606-019-0037-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Disorders of Arousal (DOA) are mental and motor behaviors arising from NREM sleep. They comprise a spectrum of manifestations of increasing intensity from confusional arousals to sleep terrors to sleepwalking.
Although DOA in childhood are usually harmless, in adulthood they are often associated with injurious or violent behaviors to the patient or others. Driving motor vehicles, suspected suicide, and even homicide or attempted homicide have been described during sleepwalking in adults. Furthermore, adult DOA need to be differentiated from other sleep disorders such as Sleep-related Hypermotor Epilepsy or REM Sleep Behavior Disorder.
Although many aspects of DOA have been clarified in the last two decades there is still a lack of objective and quantitative diagnostic criteria for DOA.
Recent advances in EEG analysis and in the semiological characterization of DOA motor patterns have provided a better definition of DOA diagnosis.
Our article focuses on the DOA diagnostic process describing accurately the newest DOA clinical, EEG and video-polysomnographic tools in order to aid clinicians in DOA assessment.
Collapse
|
6
|
Zhao X, Lhatoo SD. Seizure detection: do current devices work? And when can they be useful? Curr Neurol Neurosci Rep 2018; 18:40. [PMID: 29796939 DOI: 10.1007/s11910-018-0849-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The unpredictability and apparent randomness of epileptic seizures is one of the most vexing aspects of epilepsy. Methods or devices capable of detecting seizures may help prevent injury or even death and significantly improve quality of life. Here, we summarize and evaluate currently available, unimodal, or polymodal detection systems for epileptic seizures, mainly in the ambulatory setting. RECENT FINDINGS There are two broad categories of detection devices: EEG-based and non-EEG-based systems. Wireless wearable EEG devices are now available both in research and commercial arenas. Neuro-stimulation devices are currently evolving and initial experiences of these show potential promise. As for non-EEG devices, different detecting systems show different sensitivity according to the different patient and seizure types. Regardless, when used in combination, these modalities may complement each other to increase positive predictive value. Although some devices with high sensitivity are promising, practical widespread use of such detection systems is still some way away. More research and experience are needed to evaluate the most efficient and integrated systems, to allow for better approaches to detection and prediction of seizures. The concept of closed-loop systems and prompt intervention may substantially improve quality of life for patients and carers.
Collapse
Affiliation(s)
- Xiuhe Zhao
- Epilepsy Center, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.,Neurology Department, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Samden D Lhatoo
- Epilepsy Center, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA. .,NIH/NINDS Center for SUDEP Research, Boston, MA, USA.
| |
Collapse
|
7
|
Ahmedt-Aristizabal D, Fookes C, Dionisio S, Nguyen K, Cunha JPS, Sridharan S. Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: A focused survey. Epilepsia 2017; 58:1817-1831. [DOI: 10.1111/epi.13907] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 11/28/2022]
Affiliation(s)
- David Ahmedt-Aristizabal
- The Speech, Audio, Image and Video Technologies (SAIVT) and Science and Engineering Faculty; Queensland University of Technology; Brisbane Queensland Australia
| | - Clinton Fookes
- The Speech, Audio, Image and Video Technologies (SAIVT) and Science and Engineering Faculty; Queensland University of Technology; Brisbane Queensland Australia
| | - Sasha Dionisio
- Mater Centre for Neurosciences; Brisbane Queensland Australia
| | - Kien Nguyen
- The Speech, Audio, Image and Video Technologies (SAIVT) and Science and Engineering Faculty; Queensland University of Technology; Brisbane Queensland Australia
| | - João Paulo S. Cunha
- The Institute of Systems and Computer Engineering; Technology and Science; and Faculty of Engineering; University of Porto; Porto Portugal
| | - Sridha Sridharan
- The Speech, Audio, Image and Video Technologies (SAIVT) and Science and Engineering Faculty; Queensland University of Technology; Brisbane Queensland Australia
| |
Collapse
|
8
|
Achilles F, Tombari F, Belagiannis V, Loesch AM, Noachtar S, Navab N. Convolutional neural networks for real-time epileptic seizure detection. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2016. [DOI: 10.1080/21681163.2016.1141062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Felix Achilles
- Computer Aided Medical Procedures, Technische Universität München, Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Federico Tombari
- Computer Aided Medical Procedures, Technische Universität München, Munich, Germany
- DISI, University of Bologna, Bologna, Italy
| | - Vasileios Belagiannis
- Computer Aided Medical Procedures, Technische Universität München, Munich, Germany
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Anna Mira Loesch
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Soheyl Noachtar
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nassir Navab
- Computer Aided Medical Procedures, Technische Universität München, Munich, Germany
- Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
9
|
Long-term accelerometry-triggered video monitoring and detection of tonic-clonic and clonic seizures in a home environment: Pilot study. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 5:66-71. [PMID: 27144123 PMCID: PMC4840430 DOI: 10.1016/j.ebcr.2016.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/25/2022]
Abstract
Purpose The aim of our study was to test the efficacy of the VARIA system (video, accelerometry, and radar-induced activity recording) and validation of accelerometry-based detection algorithms for nocturnal tonic–clonic and clonic seizures developed by our team. Methods We present the results of two patients with tonic–clonic and clonic seizures, measured for about one month in a home environment with four wireless accelerometers (ACM) attached to wrists and ankles. The algorithms were developed using wired ACM data synchronized with the gold standard video-/electroencephalography (EEG) and then run offline on the wireless ACM signals. Detection of seizures was compared with semicontinuous monitoring by professional caregivers (keeping an eye on multiple patients). Results The best result for the two patients was obtained with the semipatient-specific algorithm which was developed using all patients with tonic–clonic and clonic seizures in our database with wired ACM. It gave a mean sensitivity of 66.87% and false detection rate of 1.16 per night. This included 13 extra seizures detected (31%) compared with professional caregivers' observations. Conclusion While the algorithms were previously validated in a controlled video/EEG monitoring unit with wired sensors, we now show the first results of long-term, wireless testing in a home environment.
Collapse
|