1
|
Xu L, Zhang C, Liu Y, Shang X, Huang D. Association between dietary potassium intake and severe headache or migraine in US adults: a population-based analysis. Front Nutr 2023; 10:1255468. [PMID: 37781118 PMCID: PMC10540813 DOI: 10.3389/fnut.2023.1255468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Background Migraine is a prevalent neurovascular headache disorder. The link between dietary potassium and blood pressure has been established. We sought to delineate the relationship between dietary potassium intake and the prevalence of migraines. Methods We conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999-2004, comprising 10,254 participants aged ≥20 years. Participants who reported severe headaches or migraine in the self-report questionnaire were identified as migraineurs. A 24-h dietary recall methodology was used to assess dietary potassium intake. Multivariate regression analysis and restricted cubic spline (RCS) modeling were utilized to elucidate the relationship between dietary potassium and migraines. Results Among the 10,254 participants, 20.1% were identified with migraine or severe headaches. The adjusted odds ratio (OR) for migraine occurrence in the Q2 dietary potassium intake (1771-2,476 mg/d) was 0.84 (95% CI: 0.73-0.97, p = 0.021) compared to the lowest quartile (Q1, ≤ 1771 mg/d). The relationship between dietary potassium and migraine exhibited an L-shaped pattern (non-linear, p = 0.016) with an inflection at approximately 1439.3 mg/d. In the subgroup analysis, when compared to Q1, who had the lowest dietary potassium intake, the adjusted OR for Q2 in females, those in the medium-high household income group, and with a Body Mass Index (BMI) ≥ 25 kg/m2 were as follows: (OR, 0.82; 95% CI, 0.69-0.98), (OR, 0.79; 95% CI, 0.66-0.95), and (OR, 0.78; 95% CI, 0.66-0.93), respectively. No significant interaction was observed across groups after adjusting for all possible covariates. Conclusion The relationship between dietary potassium intake and migraine prevalence among US adults appears to follow an L-shaped curve.
Collapse
Affiliation(s)
- Lisi Xu
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, Shen Yang, China
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shen Yang, China
| | - Cong Zhang
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, Shen Yang, China
| | - Yan Liu
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, Shen Yang, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shen Yang, China
| | - Daifa Huang
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, Shen Yang, China
| |
Collapse
|
2
|
Amoroso N, Quarto S, La Rocca M, Tangaro S, Monaco A, Bellotti R. An eXplainability Artificial Intelligence approach to brain connectivity in Alzheimer's disease. Front Aging Neurosci 2023; 15:1238065. [PMID: 37719873 PMCID: PMC10501457 DOI: 10.3389/fnagi.2023.1238065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
The advent of eXplainable Artificial Intelligence (XAI) has revolutionized the way human experts, especially from non-computational domains, approach artificial intelligence; this is particularly true for clinical applications where the transparency of the results is often compromised by the algorithmic complexity. Here, we investigate how Alzheimer's disease (AD) affects brain connectivity within a cohort of 432 subjects whose T1 brain Magnetic Resonance Imaging data (MRI) were acquired within the Alzheimer's Disease Neuroimaging Initiative (ADNI). In particular, the cohort included 92 patients with AD, 126 normal controls (NC) and 214 subjects with mild cognitive impairment (MCI). We show how graph theory-based models can accurately distinguish these clinical conditions and how Shapley values, borrowed from game theory, can be adopted to make these models intelligible and easy to interpret. Explainability analyses outline the role played by regions like putamen, middle and superior temporal gyrus; from a class-related perspective, it is possible to outline specific regions, such as hippocampus and amygdala for AD and posterior cingulate and precuneus for MCI. The approach is general and could be adopted to outline how brain connectivity affects specific brain regions.
Collapse
Affiliation(s)
- Nicola Amoroso
- Dipartimento di Farmacia-Scienze del Farmaco, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Silvano Quarto
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marianna La Rocca
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Agostinho D, Caramelo F, Moreira AP, Santana I, Abrunhosa A, Castelo-Branco M. Combined Structural MR and Diffusion Tensor Imaging Classify the Presence of Alzheimer's Disease With the Same Performance as MR Combined With Amyloid Positron Emission Tomography: A Data Integration Approach. Front Neurosci 2022; 15:638175. [PMID: 35069090 PMCID: PMC8766722 DOI: 10.3389/fnins.2021.638175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: In recent years, classification frameworks using imaging data have shown that multimodal classification methods perform favorably over the use of a single imaging modality for the diagnosis of Alzheimer's Disease. The currently used clinical approach often emphasizes the use of qualitative MRI and/or PET data for clinical diagnosis. Based on the hypothesis that classification of isolated imaging modalities is not predictive of their respective value in combined approaches, we investigate whether the combination of T1 Weighted MRI and diffusion tensor imaging (DTI) can yield an equivalent performance as the combination of quantitative structural MRI (sMRI) with amyloid-PET. Methods: We parcellated the brain into regions of interest (ROI) following different anatomical labeling atlases. For each region of interest different metrics were extracted from the different imaging modalities (sMRI, PiB-PET, and DTI) to be used as features. Thereafter, the feature sets were reduced using an embedded-based feature selection method. The final reduced sets were then used as input in support vector machine (SVM) classifiers. Three different base classifiers were created, one for each imaging modality, and validated using internal (n = 41) and external data from the ADNI initiative (n = 330 for sMRI, n = 148 for DTI and n = 55 for PiB-PET) sources. Finally, the classifiers were ensembled using a weighted method in order to evaluate the performance of different combinations. Results: For the base classifiers the following performance levels were found: sMRI-based classifier (accuracy, 92%; specificity, 97% and sensitivity, 87%), PiB-PET (accuracy, 91%; specificity, 89%; and sensitivity, 92%) and the lowest performance was attained with DTI (accuracy, 80%; specificity, 76%; and sensitivity, 82%). From the multimodal approaches, when integrating two modalities, the following results were observed: sMRI+PiB-PET (accuracy, 98%; specificity, 98%; and sensitivity, 99%), sMRI+DTI (accuracy, 97%; specificity, 99%; and sensitivity, 94%) and PiB-PET+DTI (accuracy, 91%; specificity, 90%; and sensitivity, 93%). Finally, the combination of all imaging modalities yielded an accuracy of 98%, specificity of 97% and sensitivity of 99%. Conclusion: Although DTI in isolation shows relatively poor performance, when combined with structural MR, it showed a surprising classification performance which was comparable to MR combined with amyloid PET. These results are consistent with the notion that white matter changes are also important in Alzheimer's Disease.
Collapse
Affiliation(s)
- Daniel Agostinho
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Ana Paula Moreira
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Faculty of Medicine, Coimbra University Hospital (CHUC), University of Coimbra, Coimbra, Portugal
| | - Antero Abrunhosa
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Automatic Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment Based on CNN + SVM Networks with End-to-End Training. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:9121770. [PMID: 34426737 PMCID: PMC8380157 DOI: 10.1155/2021/9121770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease, and, at present, once it has been diagnosed, there is no effective curative treatment. Accurate and early diagnosis of Alzheimer's disease is crucial for improving the condition of patients since effective preventive measures can be taken in advance to delay the onset time of the disease. 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG PET : PET) is an effective biomarker of the symptom of AD and has been used as medical imaging data for diagnosing AD. Mild cognitive impairment (MCI) is regarded as an early symptom of AD, and it has been shown that MCI also has a certain biomedical correlation with PET. In this paper, we explore how to use 3D PET images to realize the effective recognition of MCI and thus achieve the early prediction of AD. This problem is then taken as the classification of three categories of PET images, including MCI, AD, and NC (normal controls). In order to get better classification performance, a novel network model is proposed in the paper based on 3D convolution neural networks (CNN) and support vector machines (SVM) by utilizing both the excellent abilities of CNN in feature extraction and SVM in classification. In order to make full use of the optimal property of SVM in solving binary classification problems, the three-category classification problem is divided into three binary classifications, and each binary classification is being realized with a CNN + SVM network. Then, the outputs of the three CNN + SVM networks are fused into a final three-category classification result. An end-to-end learning algorithm is developed to train the CNN + SVM networks, and a decision fusion algorithm is exploited to realize the fusion of the outputs of three CNN + SVM networks. Experimental results obtained in the work with comparative analyses confirm the effectiveness of the proposed method.
Collapse
|
5
|
Machine Learning for the Classification of Alzheimer’s Disease and Its Prodromal Stage Using Brain Diffusion Tensor Imaging Data: A Systematic Review. Processes (Basel) 2020. [DOI: 10.3390/pr8091071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease is notoriously the most common cause of dementia in the elderly, affecting an increasing number of people. Although widespread, its causes and progression modalities are complex and still not fully understood. Through neuroimaging techniques, such as diffusion Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed, offering a valuable tool for both its diagnosis and early detection. However, processing large quantities of medical images is not an easy task, and researchers have turned their attention towards machine learning, a set of computer algorithms that automatically adapt their output towards the intended goal. In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and reporting their performance score. A few examined studies also include mild cognitive impairment in the classification problem, while others combine diffusion data with other sources, like structural magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest a promising role for machine learning in evaluating effective classification features, like fractional anisotropy, and in possibly performing on different image modalities with higher accuracy.
Collapse
|
6
|
Huang Y, Xu J, Zhou Y, Tong T, Zhuang X. Diagnosis of Alzheimer's Disease via Multi-Modality 3D Convolutional Neural Network. Front Neurosci 2019; 13:509. [PMID: 31213967 PMCID: PMC6555226 DOI: 10.3389/fnins.2019.00509] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/02/2019] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. In the last decade, studies on AD diagnosis has attached great significance to artificial intelligence-based diagnostic algorithms. Among the diverse modalities of imaging data, T1-weighted MR and FDG-PET are widely used for this task. In this paper, we propose a convolutional neural network (CNN) to integrate all the multi-modality information included in both T1-MR and FDG-PET images of the hippocampal area, for the diagnosis of AD. Different from the traditional machine learning algorithms, this method does not require manually extracted features, instead, it utilizes 3D image-processing CNNs to learn features for the diagnosis or prognosis of AD. To test the performance of the proposed network, we trained the classifier with paired T1-MR and FDG-PET images in the ADNI datasets, including 731 cognitively unimpaired (labeled as CN) subjects, 647 subjects with AD, 441 subjects with stable mild cognitive impairment (sMCI) and 326 subjects with progressive mild cognitive impairment (pMCI). We obtained higher accuracies of 90.10% for CN vs. AD task, 87.46% for CN vs. pMCI task, and 76.90% for sMCI vs. pMCI task. The proposed framework yields a state-of-the-art performance. Finally, the results have demonstrated that (1) segmentation is not a prerequisite when using a CNN for the classification, (2) the combination of two modality imaging data generates better results.
Collapse
Affiliation(s)
- Yechong Huang
- School of Data Science, Fudan University, Shanghai, China
| | - Jiahang Xu
- School of Data Science, Fudan University, Shanghai, China
| | - Yuncheng Zhou
- School of Data Science, Fudan University, Shanghai, China
| | - Tong Tong
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China
| | | |
Collapse
|
7
|
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis. Neuroinformatics 2019; 16:295-308. [PMID: 29572601 DOI: 10.1007/s12021-018-9370-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.
Collapse
|
8
|
Liu M, Cheng D, Yan W. Classification of Alzheimer's Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front Neuroinform 2018; 12:35. [PMID: 29970996 PMCID: PMC6018166 DOI: 10.3389/fninf.2018.00035] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/28/2018] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain degenerative disorder affecting people aged older than 65 years. Currently, there is no effective cure for AD, but its progression can be delayed with some treatments. Accurate and early diagnosis of AD is vital for the patient care and development of future treatment. Fluorodeoxyglucose positrons emission tomography (FDG-PET) is a functional molecular imaging modality, which proves to be powerful to help understand the anatomical and neural changes of brain related to AD. Most existing methods extract the handcrafted features from images, and then design a classifier to distinguish AD from other groups. These methods highly depends on the preprocessing of brain images, including image rigid registration and segmentation. Motivated by the success of deep learning in image classification, this paper proposes a new classification framework based on combination of 2D convolutional neural networks (CNN) and recurrent neural networks (RNNs), which learns the intra-slice and inter-slice features for classification after decomposition of the 3D PET image into a sequence of 2D slices. The 2D CNNs are built to capture the features of image slices while the gated recurrent unit (GRU) of RNN is cascaded to learn and integrate the inter-slice features for image classification. No rigid registration and segmentation are required for PET images. Our method is evaluated on the baseline FDG-PET images acquired from 339 subjects including 93 AD patients, 146 mild cognitive impairments (MCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an area under receiver operating characteristic curve (AUC) of 95.3% for AD vs. NC classification and 83.9% for MCI vs. NC classification, demonstrating the promising classification performance.
Collapse
Affiliation(s)
- Manhua Liu
- Department of Instrument Science and Engineering, The School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, China
| | - Danni Cheng
- Department of Instrument Science and Engineering, The School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwu Yan
- Department of Automation, The School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
9
|
Dimitriadis SI, Liparas D. How random is the random forest? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer's disease: from Alzheimer's disease neuroimaging initiative (ADNI) database. Neural Regen Res 2018; 13:962-970. [PMID: 29926817 PMCID: PMC6022472 DOI: 10.4103/1673-5374.233433] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 11/08/2022] Open
Abstract
Neuroinformatics is a fascinating research field that applies computational models and analytical tools to high dimensional experimental neuroscience data for a better understanding of how the brain functions or dysfunctions in brain diseases. Neuroinformaticians work in the intersection of neuroscience and informatics supporting the integration of various sub-disciplines (behavioural neuroscience, genetics, cognitive psychology, etc.) working on brain research. Neuroinformaticians are the pathway of information exchange between informaticians and clinicians for a better understanding of the outcome of computational models and the clinical interpretation of the analysis. Machine learning is one of the most significant computational developments in the last decade giving tools to neuroinformaticians and finally to radiologists and clinicians for an automatic and early diagnosis-prognosis of a brain disease. Random forest (RF) algorithm has been successfully applied to high-dimensional neuroimaging data for feature reduction and also has been applied to classify the clinical label of a subject using single or multi-modal neuroimaging datasets. Our aim was to review the studies where RF was applied to correctly predict the Alzheimer's disease (AD), the conversion from mild cognitive impairment (MCI) and its robustness to overfitting, outliers and handling of non-linear data. Finally, we described our RF-based model that gave us the 1st position in an international challenge for automated prediction of MCI from MRI data.
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Dimitris Liparas
- High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Stuttgart, Germany
- Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
10
|
Classification of Alzheimer's and MCI Patients from Semantically Parcelled PET Images: A Comparison between AV45 and FDG-PET. Int J Biomed Imaging 2018; 2018:1247430. [PMID: 29736165 PMCID: PMC5875062 DOI: 10.1155/2018/1247430] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 02/01/2023] Open
Abstract
Early identification of dementia in the early or late stages of mild cognitive impairment (MCI) is crucial for a timely diagnosis and slowing down the progression of Alzheimer's disease (AD). Positron emission tomography (PET) is considered a highly powerful diagnostic biomarker, but few approaches investigated the efficacy of focusing on localized PET-active areas for classification purposes. In this work, we propose a pipeline using learned features from semantically labelled PET images to perform group classification. A deformable multimodal PET-MRI registration method is employed to fuse an annotated MNI template to each patient-specific PET scan, generating a fully labelled volume from which 10 common regions of interest used for AD diagnosis are extracted. The method was evaluated on 660 subjects from the ADNI database, yielding a classification accuracy of 91.2% for AD versus NC when using random forests combining features from cross-sectional and follow-up exams. A considerable improvement in the early versus late MCI classification accuracy was achieved using FDG-PET compared to the AV-45 compound, yielding a 72.5% rate. The pipeline demonstrates the potential of exploiting longitudinal multiregion PET features to improve cognitive assessment.
Collapse
|
11
|
Sarica A, Cerasa A, Quattrone A. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review. Front Aging Neurosci 2017; 9:329. [PMID: 29056906 PMCID: PMC5635046 DOI: 10.3389/fnagi.2017.00329] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Objective: Machine learning classification has been the most important computational development in the last years to satisfy the primary need of clinicians for automatic early diagnosis and prognosis. Nowadays, Random Forest (RF) algorithm has been successfully applied for reducing high dimensional and multi-source data in many scientific realms. Our aim was to explore the state of the art of the application of RF on single and multi-modal neuroimaging data for the prediction of Alzheimer's disease. Methods: A systematic review following PRISMA guidelines was conducted on this field of study. In particular, we constructed an advanced query using boolean operators as follows: (“random forest” OR “random forests”) AND neuroimaging AND (“alzheimer's disease” OR alzheimer's OR alzheimer) AND (prediction OR classification). The query was then searched in four well-known scientific databases: Pubmed, Scopus, Google Scholar and Web of Science. Results: Twelve articles—published between the 2007 and 2017—have been included in this systematic review after a quantitative and qualitative selection. The lesson learnt from these works suggest that when RF was applied on multi-modal data for prediction of Alzheimer's disease (AD) conversion from the Mild Cognitive Impairment (MCI), it produces one of the best accuracies to date. Moreover, the RF has important advantages in terms of robustness to overfitting, ability to handle highly non-linear data, stability in the presence of outliers and opportunity for efficient parallel processing mainly when applied on multi-modality neuroimaging data, such as, MRI morphometric, diffusion tensor imaging, and PET images. Conclusions: We discussed the strengths of RF, considering also possible limitations and by encouraging further studies on the comparisons of this algorithm with other commonly used classification approaches, particularly in the early prediction of the progression from MCI to AD.
Collapse
Affiliation(s)
- Alessia Sarica
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Antonio Cerasa
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Aldo Quattrone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy.,Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
12
|
Wenjun Wu, Venugopalan J, Wang MD. 11C-PIB PET image analysis for Alzheimer's diagnosis using weighted voting ensembles. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:3914-3917. [PMID: 29060753 PMCID: PMC7324291 DOI: 10.1109/embc.2017.8037712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's Disease (AD) is one of the leading causes of death and dementia worldwide. Early diagnosis confers many benefits, including improved care and access to effective treatment. However, it is still a medical challenge due to the lack of an efficient and inexpensive way to assess cognitive function [1]. Although research on data from Neuroimaging and Brain Initiative and the advancement in data analytics has greatly enhanced our understanding of the underlying disease process, there is still a lack of complete knowledge regarding the indicative biomarkers of Alzheimer's Disease. Recently, computer aided diagnosis of mild cognitive impairment and AD with functional brain images using machine learning methods has become popular. However, the prediction accuracy remains unoptimistic, with prediction accuracy ranging from 60% to 88% [2,3,6]. Among them, support vector machine is the most popular classifier. However, because of the relatively small sample size and the amount of noise in functional brain imaging data, a single classifier cannot achieve high classification performance. Instead of using a global classifier, in this work, we aim to improve AD prediction accuracy by combining three different classifiers using weighted and unweighted schemes. We rank image-derived features according to their importance to the classification performance and show that the top ranked features are localized in the brain areas which have been found to associate with the progression of AD. We test the proposed approach on 11C-PIB PET scans from The Alzheimer's Disease Neuroimaging Initiative (ADNI) database and demonstrated that the weighted ensemble models outperformed individual models of K-Nearest Neighbors, Random Forests, Neural Nets with overall cross validation accuracy of 86.1% ± 8.34%, specificity of 90.6% ± 12.9% and test accuracy of 80.9% and specificity 85.76% in classification of AD, mild cognitive impairment and healthy elder adults.
Collapse
|