1
|
Wang C, Zhou Y, Li Y, Pang W, Wang L, Du W, Yang H, Jin Y. ICPPNet: A semantic segmentation network model based on inter-class positional prior for scoliosis reconstruction in ultrasound images. J Biomed Inform 2025:104827. [PMID: 40258407 DOI: 10.1016/j.jbi.2025.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
OBJECTIVE Considering the radiation hazard of X-ray, safer, more convenient and cost-effective ultrasound methods are gradually becoming new diagnostic approaches for scoliosis. For ultrasound images of spine regions, it is challenging to accurately identify spine regions in images due to relatively small target areas and the presence of a lot of interfering information. Therefore, we developed a novel neural network that incorporates prior knowledge to precisely segment spine regions in ultrasound images. MATERIALS AND METHODS We constructed a dataset of ultrasound images of spine regions for semantic segmentation. The dataset contains 3,136 images of 30 patients with scoliosis. And we propose a network model (ICPPNet), which fully utilizes inter-class positional prior knowledge by combining an inter-class positional probability heatmap, to achieve accurate segmentation of target areas. RESULTS ICPPNet achieved an average Dice similarity coefficient of 70.83% and an average 95% Hausdorff distance of 11.28 mm on the dataset, demonstrating its excellent performance. The average error between the Cobb angle measured by our method and the Cobb angle measured by X-ray images is 1.41 degrees, and the coefficient of determination is 0.9879 with a strong correlation. DISCUSSION AND CONCLUSION ICPPNet provides a new solution for the medical image segmentation task with positional prior knowledge between target classes. And ICPPNet strongly supports the subsequent reconstruction of spine models using ultrasound images.
Collapse
Affiliation(s)
- Changlong Wang
- College of Software, Jilin University, Changchun, 130012, Jilin, China
| | - You Zhou
- College of Software, Jilin University, Changchun, 130012, Jilin, China; College of Computer Science and Technology, Jilin University, Changchun, 130012, Jilin, China.
| | - Yuanshu Li
- College of Computer Science and Technology, Jilin University, Changchun, 130012, Jilin, China
| | - Wei Pang
- School of Mathematical and Computer Sciences, Heriot-Watt University, EH14, 4AS, Edinburgh, United Kingdom
| | - Liupu Wang
- College of Computer Science and Technology, Jilin University, Changchun, 130012, Jilin, China
| | - Wei Du
- College of Computer Science and Technology, Jilin University, Changchun, 130012, Jilin, China
| | - Hui Yang
- Public Computer Education and Research Center, Jilin University, Changchun, 130012, Jilin, China.
| | - Ying Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130031, Jilin, China.
| |
Collapse
|
2
|
Li S, Cheriet F, Gauthier L, Laporte C. Automatic 3-D Lamina Curve Extraction From Freehand 3-D Ultrasound Data Using Sequential Localization Recurrent Convolutional Networks. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1429-1439. [PMID: 38578857 DOI: 10.1109/tuffc.2024.3385698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Freehand 3-D ultrasound imaging is emerging as a promising modality for regular spine exams due to its noninvasiveness and affordability. The laminae landmarks play a critical role in depicting the 3-D shape of the spine. However, the extraction of the 3-D lamina curves from transverse ultrasound sequences presents a challenging task, primarily attributed to the presence of diverse contrast variations, imaging artifacts, the complex surface of vertebral bones, and the difficulties associated with probe manipulation. This article proposes sequential localization recurrent convolutional networks (SL-RCNs), a novel deep learning model that takes the contextual relationships into account and embeds the transformation matrix feature as a 3-D knowledge base to enhance accurate ultrasound sequence analysis. The assessment involved the analysis of 3-D ultrasound sequences obtained from ten healthy adult human participants, covering both the lumbar and thoracic regions. The performance of SL-RCN is evaluated through sevenfold cross-validation, using the leave-one-participant-out strategy. The validity of AI model training is assessed on test data from three participants. Normalized discrete Fréchet distance (NDFD) is used as the main metric to evaluate the disparity of the extracted 3-D lamina curves. In contrast to our previous 2-D image analysis method, SL-RCN generates reduced left/right mean distance errors (MDEs) from 1.62/1.63 to 1.41/1.40 mm, and NDFDs from 0.5910/0.6389 to 0.4276/0.4567. The increase in the mean NDFD value from sevenfold cross-validation to the test data experiment is less than 0.05. The experiments demonstrate the SL-RCN's capability in extracting accurate paired smooth lamina landmark curves.
Collapse
|
3
|
Huang Y, Jiao J, Yu J, Zheng Y, Wang Y. Si-MSPDNet: A multiscale Siamese network with parallel partial decoders for the 3-D measurement of spines in 3D ultrasonic images. Comput Med Imaging Graph 2023; 108:102262. [PMID: 37385048 DOI: 10.1016/j.compmedimag.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Early screening and frequent monitoring effectively decrease the risk of severe scoliosis, but radiation exposure is a consequence of traditional radiograph examinations. Additionally, traditional X-ray images on the coronal or sagittal plane have difficulty providing three-dimensional (3-D) information on spinal deformities. The Scolioscan system provides an innovative 3-D spine imaging approach via ultrasonic scanning, and its feasibility has been demonstrated in numerous studies. In this paper, to further examine the potential of spinal ultrasonic data for describing 3-D spinal deformities, we propose a novel deep-learning tracker named Si-MSPDNet for extracting widely employed landmarks (spinous process (SP)) in ultrasonic images of spines and establish a 3-D spinal profile to measure 3-D spinal deformities. Si-MSPDNet has a Siamese architecture. First, we employ two efficient two-stage encoders to extract features from the uncropped ultrasonic image and the patch centered on the SP cut from the image. Then, a fusion block is designed to strengthen the communication between encoded features and further refine them from channel and spatial perspectives. The SP is a very small target in ultrasonic images, so its representation is weak in the highest-level feature maps. To overcome this, we ignore the highest-level feature maps and introduce parallel partial decoders to localize the SP. The correlation evaluation in the traditional Siamese network is also expanded to multiple scales to enhance cooperation. Furthermore, we propose a binary guided mask based on vertebral anatomical prior knowledge, which can further improve the performance of our tracker by highlighting the potential region with SP. The binary-guided mask is also utilized for fully automatic initialization in tracking. We collected spinal ultrasonic data and corresponding radiographs on the coronal and sagittal planes from 150 patients to evaluate the tracking precision of Si-MSPDNet and the performance of the generated 3-D spinal profile. Experimental results revealed that our tracker achieved a tracking success rate of 100% and a mean IoU of 0.882, outperforming some commonly used tracking and real-time detection models. Furthermore, a high correlation existed on both the coronal and sagittal planes between our projected spinal curve and that extracted from the spinal annotation in X-ray images. The correlation between the tracking results of the SP and their ground truths on other projected planes was also satisfactory. More importantly, the difference in mean curvatures was slight on all projected planes between tracking results and ground truths. Thus, this study effectively demonstrates the promising potential of our 3-D spinal profile extraction method for the 3-D measurement of spinal deformities using 3-D ultrasound data.
Collapse
Affiliation(s)
- Yi Huang
- Biomedical Engineering Center, Fudan University, Shanghai 200433, China
| | - Jing Jiao
- Biomedical Engineering Center, Fudan University, Shanghai 200433, China
| | - Jinhua Yu
- Biomedical Engineering Center, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, 200433, China
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
| | - Yuanyuan Wang
- Biomedical Engineering Center, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, 200433, China.
| |
Collapse
|
4
|
Huang Q, Luo H, Yang C, Li J, Deng Q, Liu P, Fu M, Li L, Li X. Anatomical prior based vertebra modelling for reappearance of human spines. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zheng YP, Lee TTY. 3D Ultrasound Imaging of the Spine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:349-372. [DOI: 10.1007/978-3-030-91979-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Lee TTY, Lai KKL, Cheng JCY, Castelein RM, Lam TP, Zheng YP. 3D ultrasound imaging provides reliable angle measurement with validity comparable to X-ray in patients with adolescent idiopathic scoliosis. J Orthop Translat 2021; 29:51-59. [PMID: 34094858 PMCID: PMC8144340 DOI: 10.1016/j.jot.2021.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND & OBJECTIVE The application of ultrasound imaging for spine evaluation could minimize radiation exposure for patients with adolescence idiopathic scoliosis (AIS). A customized three-dimensional (3D) ultrasound imaging system has been demonstrated to provide reliable and valid coronal curvature measurements. However, these measurements were using the spinous processes as anatomical reference, leading to a predictable underestimation of the traditionally used Cobb angles. An alternative 3D ultrasound image reconstruction method was applied to create coronal images with more lateral features for angle measurement. The objective of this study was to test the reliability and the validity of this angle, the ultrasound curve angle (UCA), and compare the UCA with the Cobb angles on X-ray images of patients with AIS. MATERIALS AND METHODS This study was divided into: 1) Investigation of intra- and inter-reliability between two raters for measuring the UCA and two operators for acquiring ultrasound images; 2) Investigation of the validity between the radiographic Cobb angle and the UCA. Fifty patients and 164 patients with AIS, were included in the two stages, respectively. Patients underwent bi-planar X-ray and 3D ultrasound scanning on the same day. The proposed UCA was used to measure the coronal curvature from the ultrasound coronal images, which were formed using a newly customized volume projection imaging (VPI) method. The intra-rater/operator and inter-rater and operator reliability of the UCA were tested by intra-class correlation coefficient (ICC) (3,1) and (2,1), respectively. The validity of UCA measurements as compared to radiographic Cobb angles was tested by inter-method ICC (2,1), mean absolute difference (MAD), standard error of measurement (SEM), Pearson correlation coefficient and Bland-Altman statistics. The level of significance was set as 0.05. RESULTS Excellent intra-rater and intra-operator (ICC (3,1)≥0.973) and excellent inter-rater and inter-operator reliability (ICC (2,1)≥0.925) for UCA measurement, with overall MAD and SEM no more than 3.5° and 1.7° were demonstrated for both main thoracic and (thoraco)lumbar curvatures. Very good correlations were observed between UCA and Cobb angle for main thoracic (R 2 =0.893) and (thoraco)lumbar (R 2 =0.884) curves. The mean (SD) measurements in terms of radiographic Cobb and UCA were 27.2 ± 11.6° and 26.3 ± 11.4° for main thoracic curves; and 26.2 ± 11.4° and 24.8 ± 9.7° for (thoraco)lumbar curve respectively. One hundred sixty-four subjects (33 male and 131 female subjects; 11-18 years of age, mean of 15.1 ± 1.9 years) were included for the validity session. Excellent inter-method variations (ICC (2,K) ≥0.933) with overall MAD and SEM no more than 3.0° and 1.5° were demonstrated for both main thoracic and (thoraco)lumbar curvatures. In addition, Bland-Altman plots demonstrated an acceptable agreement between ultrasound and radiographic Cobb measurements. CONCLUSION In this study, very good correlations and agreement were demonstrated between the ultrasound and X-ray measurements of the scoliotic curvature. Judging from the promising results of this study, patients with AIS with different severity of curves can be evaluated and monitored by ultrasound imaging, reducing the usage of radiation during follow-ups. This method could also be used for scoliosis screening.The Translational potential of this article: Ultrasound curve angle (UCA) obtained from 3D ultrasound imaging system can provide reliable and valid evaluation on coronal curvature for patients with AIS, without the need of radiation.
Collapse
Affiliation(s)
- Timothy Tin-Yan Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Kelly Ka-Lee Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jack Chun-Yiu Cheng
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - René Marten Castelein
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tsz-Ping Lam
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
7
|
Lai KKL, Lee TTY, Lee MKS, Hui JCH, Zheng YP. Validation of Scolioscan Air-Portable Radiation-Free Three-Dimensional Ultrasound Imaging Assessment System for Scoliosis. SENSORS (BASEL, SWITZERLAND) 2021; 21:2858. [PMID: 33921592 PMCID: PMC8073843 DOI: 10.3390/s21082858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/03/2022]
Abstract
To diagnose scoliosis, the standing radiograph with Cobb's method is the gold standard for clinical practice. Recently, three-dimensional (3D) ultrasound imaging, which is radiation-free and inexpensive, has been demonstrated to be reliable for the assessment of scoliosis and validated by several groups. A portable 3D ultrasound system for scoliosis assessment is very much demanded, as it can further extend its potential applications for scoliosis screening, diagnosis, monitoring, treatment outcome measurement, and progress prediction. The aim of this study was to investigate the reliability of a newly developed portable 3D ultrasound imaging system, Scolioscan Air, for scoliosis assessment using coronal images it generated. The system was comprised of a handheld probe and tablet PC linking with a USB cable, and the probe further included a palm-sized ultrasound module together with a low-profile optical spatial sensor. A plastic phantom with three different angle structures built-in was used to evaluate the accuracy of measurement by positioning in 10 different orientations. Then, 19 volunteers with scoliosis (13F and 6M; Age: 13.6 ± 3.2 years) with different severity of scoliosis were assessed. Each subject underwent scanning by a commercially available 3D ultrasound imaging system, Scolioscan, and the portable 3D ultrasound imaging system, with the same posture on the same date. The spinal process angles (SPA) were measured in the coronal images formed by both systems and compared with each other. The angle phantom measurement showed the measured angles well agreed with the designed values, 59.7 ± 2.9 vs. 60 degrees, 40.8 ± 1.9 vs. 40 degrees, and 20.9 ± 2.1 vs. 20 degrees. For the subject tests, results demonstrated that there was a very good agreement between the angles obtained by the two systems, with a strong correlation (R2 = 0.78) for the 29 curves measured. The absolute difference between the two data sets was 2.9 ± 1.8 degrees. In addition, there was a small mean difference of 1.2 degrees, and the differences were symmetrically distributed around the mean difference according to the Bland-Altman test. Scolioscan Air was sufficiently comparable to Scolioscan in scoliosis assessment, overcoming the space limitation of Scolioscan and thus providing wider applications. Further studies involving a larger number of subjects are worthwhile to demonstrate its potential clinical values for the management of scoliosis.
Collapse
Affiliation(s)
| | | | | | | | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong; (K.K.-L.L.); (T.T.-Y.L.); (M.K.-S.L.); (J.C.-H.H.)
| |
Collapse
|
8
|
Lyu J, Bi X, Banerjee S, Huang Z, Leung FHF, Lee TTY, Yang DD, Zheng YP, Ling SH. Dual-task ultrasound spine transverse vertebrae segmentation network with contour regularization. Comput Med Imaging Graph 2021; 89:101896. [PMID: 33752079 DOI: 10.1016/j.compmedimag.2021.101896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
3D ultrasound imaging has become one of the common diagnosis ways to assess scoliosis since it is radiation-free, real-time, and low-cost. Spine curvature angle measurement is an important step to assess scoliosis precisely. One way to calculate the angle is using the vertebrae features of the 2-D coronal images to identify the most tilted vertebrae. To do the measurement, the segmentation of the transverse vertebrae is an important step. In this paper, we propose a dual-task ultrasound transverse vertebrae segmentation network (D-TVNet) based on U-Net. First, we arrange an auxiliary shape regularization network to learn the contour segmentation of the bones. It improves the boundary segmentation and anti-interference ability of the U-Net by fusing some of the features of the auxiliary task and the main task. Then, we introduce the atrous spatial pyramid pooling (ASPP) module to the end of the down-sampling stage of the main task stream to improve the relative feature extraction ability. To further improve the boundary segmentation, we extendedly fuse the down-sampling output features of the auxiliary network in the ASPP. The experiment results show that the proposed D-TVNet achieves the best dice score of 86.68% and the mean dice score of 86.17% based on cross-validation, which is an improvement of 5.17% over the baseline U-Net. An automatic ultrasound spine bone segmentation network with promising results has been achieved.
Collapse
Affiliation(s)
- Juan Lyu
- College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
| | - Xiaojun Bi
- College of Information and Communication Engineering, Harbin Engineering University, Harbin, China; College of Information Engineering, Minzu University of China, Beijing, China
| | - Sunetra Banerjee
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zixun Huang
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Frank H F Leung
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Timothy Tin-Yan Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - De-De Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Sai Ho Ling
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
9
|
Lyu J, Ling SH, Banerjee S, Zheng JY, Lai KL, Yang D, Zheng YP, Bi X, Su S, Chamoli U. Ultrasound volume projection image quality selection by ranking from convolutional RankNet. Comput Med Imaging Graph 2021; 89:101847. [PMID: 33476927 DOI: 10.1016/j.compmedimag.2020.101847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/15/2020] [Accepted: 12/11/2020] [Indexed: 01/16/2023]
Abstract
Periodic inspection and assessment are important for scoliosis patients. 3D ultrasound imaging has become an important means of scoliosis assessment as it is a real-time, cost-effective and radiation-free imaging technique. With the generation of a 3D ultrasound volume projection spine image using our Scolioscan system, a series of 2D coronal ultrasound images are produced at different depths with different qualities. Selecting a high quality image from these 2D images is the crucial task for further scoliosis measurement. However, adjacent images are similar and difficult to distinguish. To learn the nuances between these images, we propose selecting the best image automatically, based on their quality rankings. Here, the ranking algorithm we use is a pairwise learning-to-ranking network, RankNet. Then, to extract more efficient features of input images and to improve the discriminative ability of the model, we adopt the convolutional neural network as the backbone due to its high power of image exploration. Finally, by inputting the images in pairs into the proposed convolutional RankNet, we can select the best images from each case based on the output ranking orders. The experimental result shows that convolutional RankNet achieves better than 95.5% top-3 accuracy, and we prove that this performance is beyond the experience of a human expert.
Collapse
Affiliation(s)
- Juan Lyu
- College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
| | - Sai Ho Ling
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - S Banerjee
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - J Y Zheng
- Department of Computer Science, Imperial College London, UK
| | - K L Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - D Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Y P Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Xiaojun Bi
- College of Information and Communication Engineering, Harbin Engineering University, Harbin, China; College of Information Engineering, Minzu University of China, Beijing, China
| | - Steven Su
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Uphar Chamoli
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Garcia-Cano E, Cosio FA, Torres Robles F, Fanti Z, Bellefleur C, Joncas J, Labelle H, Duong L. A freehand ultrasound framework for spine assessment in 3D: a preliminary study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2096-2100. [PMID: 33018419 DOI: 10.1109/embc44109.2020.9176689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
X-ray imaging is currently the gold standard for the assessment of spinal deformities. The purpose of this study is to evaluate a freehand 3D ultrasound system for volumetric reconstruction of the spine. A setup consisting of an ultrasound scanner with a linear transducer, an electromagnetic measuring system and a workstation was used. We conducted 64 acquisitions of US images of 8 adults in a natural standing position, and we tested three setups: 1) Subjects are constrained to be close to a wall, 2) Subjects are unconstrained, and 3) Subjects are constrained to performing fast and slow acquisitions. The spinous processes were manually selected from the volume reconstruction from tracked ultrasound images to generate a 3D point-based model depicting the centerline of the spine. The results suggested that a freehand 3D ultrasound system can be suitable for representing the spine. Volumetric reconstructions can be computed and landmarking can be performed to model the surface of the spine in the 3D space. These reconstructions promise to generate computer-based descriptors to analyze the shape of the spine in the 3D space.Clinical Relevance- We provide clinicians with a protocol that could be integrated in clinical setups for the assessment and monitoring of AIS, based on US image acquisitions, which constitutes a radiation-free technology.
Collapse
|
11
|
Lyu J, Ling SH, Banerjee S, Zheng JJY, Lai KL, Yang D, Zheng YP, Su S. 3D Ultrasound Spine Image Selection Using Convolution Learning-to-Rank Algorithm. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4799-4802. [PMID: 31946935 DOI: 10.1109/embc.2019.8857182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
3D Ultrasound imaging has become an important means of scoliosis assessment as it is a real-time, cost-effective and radiation-free imaging technique. However, the coronal images from different depths of a 3D ultrasound image have different imaging definitions. So there is a need to select the coronal image that would give the best image definition. Also, manual selection of coronal images is time-consuming and limited to the discretion and capability of the assessor. Therefore, in this paper, we have developed a convolution learning-to-rank algorithm to select the best ultrasound images automatically using raw ultrasound images. The ranking is done based on the curve angle of the spinal cord. Firstly, we approached the image selection problem as a ranking problem; ranked based on probability of an image to be a good image. Here, we use the RankNet, a pairwise learning-to-rank method, to rank the images automatically. Secondly, we replaced the backbone of the RankNet, which is the traditional artificial neural network (ANN), with convolution neural network (CNN) to improve the feature extracting ability for the successive iterations. The experimental result shows that the proposed convolutional RankNet achieves the perfect accuracy of 100% while conventional DenseNet achieved 35% only. This proves that the convolutional RankNet is more suitable to highlight the best quality of ultrasound image from multiple mediocre ones.
Collapse
|
12
|
Wu HD, Liu W, Wong MS. Reliability and validity of lateral curvature assessments using clinical ultrasound for the patients with scoliosis: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:717-725. [DOI: 10.1007/s00586-019-06280-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/18/2019] [Accepted: 12/29/2019] [Indexed: 01/18/2023]
|
13
|
Huang Q, Deng Q, Li L, Yang J, Li X. Scoliotic Imaging With a Novel Double-Sweep 2.5-Dimensional Extended Field-of-View Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1304-1315. [PMID: 31170068 DOI: 10.1109/tuffc.2019.2920422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extended field-of-view ultrasound (US EFOV) imaging is a technique used extensively in the clinical field to attain interpretable panorama of anatomy; 2.5-D US EFOV has recently been proposed for spine imaging. In the original 2.5-D US EFOV, it makes use of a six degrees-of-freedom positional sensor attached to the US probe to record the corresponding position of each B-scan. By combining the positional information and the B-scan images, the 2.5-D EFOV can reconstruct a panorama on a curved image plane when the scanning trajectory of the US probe is curved. In this paper, an improved method based on the Bezier interpolation is proposed to better reconstruct 2.5-D US EFOV imaging, producing the panoramas with smoother texture and higher quality. To make it more applicable for scoliosis patients, we designed a novel method called double-sweep 2.5-D EFOV to better image the spinal tissues and easily compute the Cobb angle. In vitro and in vivo experiments demonstrated that the 2.5-D EFOV images obtained by the proposed method can present anatomical structures of the scanning region accurately.
Collapse
|
14
|
Sim T, Yoo H, Lee D, Suh SW, Yang JH, Kim H, Mun JH. Analysis of sensory system aspects of postural stability during quiet standing in adolescent idiopathic scoliosis patients. J Neuroeng Rehabil 2018; 15:54. [PMID: 29929530 PMCID: PMC6013903 DOI: 10.1186/s12984-018-0395-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to quantitatively analyze quite standing postural stability of adolescent idiopathic scoliosis (AIS) patients in respect to three sensory systems (visual, vestibular, and somatosensory). Method In this study, we analyzed the anterior-posterior center of pressure (CoP) signal using discrete wavelet transform (DWT) between AIS patients (n = 32) and normal controls (n = 25) during quiet standing. Result The energy rate (∆EEYE%) of the CoP signal was significantly higher in the AIS group than that in the control group at levels corresponding to vestibular and somatosensory systems (p < 0.01). Conclusions This implies that AIS patients use strategies to compensate for possible head position changes and spinal asymmetry caused by morphological deformations of the spine through vestibular and somatosensory systems. This could be interpreted that such compensation could help them maintain postural stability during quiet standing. The interpretation of CoP signal during quiet standing in AIS patients will improve our understanding of changes in physical exercise ability due to morphological deformity of the spine. This result is useful for evaluating postural stability before and after treatments (spinal fusion, bracing, rehabilitation, and so on).
Collapse
Affiliation(s)
- Taeyong Sim
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Natural Sciences Campus, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Hakje Yoo
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Natural Sciences Campus, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Dongjun Lee
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Natural Sciences Campus, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Seung-Woo Suh
- Department of Orthopedics, Scoliosis Research Institute, Korea University Medical College, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Jae Hyuk Yang
- Department of Orthopedics, Scoliosis Research Institute, Korea University Medical College, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Hyunggun Kim
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Natural Sciences Campus, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Joung Hwan Mun
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Natural Sciences Campus, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
15
|
Zheng R, Hill D, Hedden D, Mahood J, Moreau M, Southon S, Lou E. Factors influencing spinal curvature measurements on ultrasound images for children with adolescent idiopathic scoliosis (AIS). PLoS One 2018; 13:e0198792. [PMID: 29912905 PMCID: PMC6005491 DOI: 10.1371/journal.pone.0198792] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/27/2018] [Indexed: 01/26/2023] Open
Abstract
The measurements of spinal curvatures using the ultrasound (US) imaging method on children with scoliosis have been comparable with radiography. However, factors influencing the reliability and accuracy of US measurement have not been studied. The purpose of this study is to investigate the effects of curve features and patients' demographics on US measurements and to determine which factors influence the reliability and accuracy. Two hundred children with scoliosis were recruited and scanned with US by one experienced operator and three trainees. One experienced rater measured the proxy Cobb angles from US images twice one week apart and compared the results with clinical radiographic records. The correlation and accuracy between the US and radiographic measurements were subdivided by different curve severities, curve types, subjects' weight status and US acquisition experiences. A total of 326 and 313 curves were recognized from radiographs and US images, respectively. The mean Cobb angles of the 13 missing curves were 17.4±7.4° and 11 at the thoracic region. Among the 16 curves showing large discrepancy (≥6°) between US and radiographic measurements, 7 were main thoracic and 6 were lumbar curves. Twelve had axial vertebral rotation (AVR) greater than 8°. The US scans performed by the experienced operator showed fewer large discrepancy curves, smaller difference and higher correlation than the scans from the trainees (3%, 1.7±1.5°, 0.95 vs 6%, 2.4±1.8°, 0.90). Only 4% missing and 5% large discrepancy curves were demonstrated for US measurements in comparison to radiography. The missing curves were mainly caused by small severity and in the upper spinal region. There was a higher chance of the large discrepancy curves in the main thoracic and lumbar regions with AVR>8°. A skilled operator acquired better US images and led to more accurate measurements especially for those subjects with larger curvatures, AVR and body mass index (BMI).
Collapse
Affiliation(s)
- Rui Zheng
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Doug Hill
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas Hedden
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - James Mahood
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Marc Moreau
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Southon
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Edmond Lou
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Kwok G, Yip J, Yick KL, Cheung MC, Tse CY, Ng SP, Luximon A. Postural Screening for Adolescent Idiopathic Scoliosis with Infrared Thermography. Sci Rep 2017; 7:14431. [PMID: 29089528 PMCID: PMC5663704 DOI: 10.1038/s41598-017-14556-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/12/2017] [Indexed: 01/06/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a multifactorial, three-dimensional deformity of the spine and trunk. School scoliosis screening (SSS) is recommended by researchers as a means of early detection of AIS to prevent its progression in school-aged children. The traditional screening technique for AIS is the forward bending test because it is simple, non-invasive and inexpensive. Other tests, such as the use of Moiré topography, have reduced the high false referral rates. The use of infrared (IR) thermography for screening purposes based on the findings of previous studies on the asymmetrical paraspinal muscle activity of scoliotic patients compared with non-scoliotic subjects was explored in this study. IR thermography is performed with an IR camera to determine the temperature differences in paraspinal muscle activity. A statistical analysis showed that scoliotic subjects demonstrate a statistically significant difference between the left and right sides of the regions of interest. This difference could be due to the higher IR emission of the convex side of the observed area, thereby creating a higher temperature distribution. The findings of this study suggest the feasibility of incorporating IR thermography as part of SSS. However, future studies could also consider a larger sample of both non-scoliotic and scoliotic subjects to further validate the findings.
Collapse
Affiliation(s)
- Garcia Kwok
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Joanne Yip
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Kit-Lun Yick
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mei-Chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Yung Tse
- Centre for Orthopaedic Surgery, Central, Hong Kong, China
| | - Sun-Pui Ng
- Division of Science & Technology, Hong Kong Community College, Hong Kong, China
| | - Ameersing Luximon
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
17
|
Zhou GQ, Jiang WW, Lai KL, Zheng YP. Automatic Measurement of Spine Curvature on 3-D Ultrasound Volume Projection Image With Phase Features. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1250-1262. [PMID: 28252393 DOI: 10.1109/tmi.2017.2674681] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents an automated measurement of spine curvature by using prior knowledge on vertebral anatomical structures in ultrasound volume projection imaging (VPI). This method can be used in scoliosis assessment with free-hand 3-D ultrasound imaging. It is based on the extraction of bony features from VPI images using a newly proposed two-fold thresholding strategy, with information of the symmetric and asymmetric measures obtained from phase congruency. The spinous column profile is detected from the segmented bony regions, and it is further used to extract a curve representing spine profile. The spine curvature is then automatically calculated according to the inflection points along the curve. The algorithm was evaluated on volunteers with the different severity of scoliosis. The results obtained using the newly developed method had a good linear correlation with those by the manual method (r ≥ 0.90, p <; 0.001) and X-ray Cobb's method (r = 0.83, p <; 0.001). The bigger variations observed in the manual measurement also implied that the automatic method is more reliable. The proposed method can be a promising approach for facilitating the applications of 3-D ultrasound imaging in the diagnosis, treatment, and screening of scoliosis.
Collapse
|
18
|
|
19
|
Zheng YP, Lee TTY, Lai KKL, Yip BHK, Zhou GQ, Jiang WW, Cheung JCW, Wong MS, Ng BKW, Cheng JCY, Lam TP. A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging. SCOLIOSIS AND SPINAL DISORDERS 2016; 11:13. [PMID: 27299162 PMCID: PMC4900244 DOI: 10.1186/s13013-016-0074-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radiographic evaluation for patients with scoliosis using Cobb method is the current gold standard, but radiography has radiation hazards. Several groups have recently demonstrated the feasibility of using 3D ultrasound for the evaluation of scoliosis. Ultrasound imaging is radiation-free, comparatively more accessible, and inexpensive. However, a reliable and valid 3D ultrasound system ready for clinical scoliosis assessment has not yet been reported. Scolioscan is a newly developed system targeted for scoliosis assessment in clinics by using coronal images of spine generated by a 3D ultrasound volume projection imaging method. The aim of this study is to test the reliability of spine deformity measurement of Scolioscan and its validity compared to the gold standard Cobb angle measurements from radiography in adolescent idiopathic scoliosis (AIS) patients. METHODS Prospective study divided into two stages: 1) Investigation of intra- and inter- reliability between two operators for acquiring images using Scolioscan and among three raters for measuring spinal curves from those images; 2) Correlation between the Cobb angle obtained from radiography by a medical doctor and the spine curve angle obtained using Scolioscan (Scolioscan angle). The raters for ultrasound images and the doctors for evaluating radiographic images were mutually blinded. The two stages of tests involved 20 (80 % females, total of 26 angles, age of 16.4 ± 2.7 years, and Cobb angle of 27.6 ± 11.8°) and 49 (69 % female, 73 angles, 15.8 ± 2.7 years and 24.8 ± 9.7°) AIS patients, respectively. Intra-class correlation coefficients (ICC) and Bland-Altman plots and root-mean-square differences (RMS) were employed to determine correlations, which interpreted based on defined criteria. RESULTS We demonstrated a very good intra-rater and intra-operator reliability for Scolioscan angle measurement with ICC larger than 0.94 and 0.88, respectively. Very good inter-rater and inter-operator reliability was also demonstrated, with both ICC larger than 0.87. For the thoracic deformity measurement, the RMS were 2.5 and 3.3° in the intra- and inter-operator tests, and 1.5 and 3.6° in the intra- and inter-rater tests, respectively. The RMS differences were 3.1, 3.1, 1.6, 3.7° in the intra- and inter-operator and intra- and inter-rater tests, respectively, for the lumbar angle measurement. Moderate to strong correlations (R(2) > 0.72) were observed between the Scolioscan angles and Cobb angles for both the thoracic and lumbar regions. It was noted that the Scolioscan angle slightly underestimated the spinal deformity in comparison with Cobb angle, and an overall regression equation y = 1.1797x (R(2) = 0.76) could be used to translate the Scolioscan angle (x) to Cobb angle (y) for this group of patients. The RMS difference between Scolioscan angle and Cobb angle was 4.7 and 6.2°, with and without the correlation using the overall regression equation. CONCLUSIONS We showed that Scolioscan is reliable for measuring coronal deformity for patients with AIS and appears promising in screening large numbers of patients, for progress monitoring, and evaluation of treatment outcomes. Due to it being radiation-free and relatively low-cost, Scolioscan has potential to be widely implemented and may contribute to reducing radiation dose during serial monitoring.
Collapse
Affiliation(s)
- Yong-Ping Zheng
- />Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - Timothy Tin-Yan Lee
- />Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - Kelly Ka-Lee Lai
- />Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - Benjamin Hon-Kei Yip
- />School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Guang-Quan Zhou
- />Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - Wei-Wei Jiang
- />Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - James Chung-Wai Cheung
- />Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - Man-Sang Wong
- />Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - Bobby King-Wah Ng
- />Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jack Chun-Yiu Cheng
- />Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Tsz-Ping Lam
- />Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
20
|
Evaluation of Myoelectric Activity of Paraspinal Muscles in Adolescents with Idiopathic Scoliosis during Habitual Standing and Sitting. BIOMED RESEARCH INTERNATIONAL 2015; 2015:958450. [PMID: 26583151 PMCID: PMC4637075 DOI: 10.1155/2015/958450] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 07/21/2015] [Indexed: 11/20/2022]
Abstract
There is a number of research work in the literature that have applied sEMG biofeedback as an instrument for muscle rehabilitation. Therefore, sEMG is a good tool for this research work and is used to record the myoelectric activity in the paraspinal muscles of those with AIS during habitual standing and sitting. After the sEMG evaluation, the root-mean-square (RMS) sEMG values of the paraspinal muscles in the habitual postures reflect the spinal curvature situation of the PUMC Type Ia and IIc subjects. Both groups have a stronger average RMS sEMG value on the convex side of the affected muscle regions. Correction to posture as instructed by the physiotherapist has helped the subjects to achieve a more balanced RMS sEMG ratio in the trapezius and latissimus dorsi regions; the erector spinae in the thoracic region and/or erector spinae in the lumbar region. It is, therefore, considered that with regular practice of the suggested positions, those with AIS can use motor learning to achieve a more balanced posture. Consequently, the findings can be used in less intrusive early orthotic intervention and provision of care to those with AIS.
Collapse
|
21
|
Wang Q, Li M, Lou EHM, Wong MS. Reliability and Validity Study of Clinical Ultrasound Imaging on Lateral Curvature of Adolescent Idiopathic Scoliosis. PLoS One 2015; 10:e0135264. [PMID: 26266802 PMCID: PMC4534204 DOI: 10.1371/journal.pone.0135264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/20/2015] [Indexed: 02/05/2023] Open
Abstract
Background Non-ionizing radiation imaging assessment has been advocated for the patients with adolescent idiopathic scoliosis (AIS). As one of the radiation-free methods, ultrasound imaging has gained growing attention in scoliosis assessment over the past decade. The center of laminae (COL) method has been proposed to measure the spinal curvature in the coronal plane of ultrasound image. However, the reliability and validity of this ultrasound method have not been validated in the clinical setting. Objectives To evaluate the reliability and validity of clinical ultrasound imaging on lateral curvature measurements of AIS with their corresponding magnetic resonance imaging (MRI) measurements. Methods Thirty curves (ranged 10.2°–68.2°) from sixteen patients with AIS were eligible for this study. The ultrasound scan was performed using a 3-D ultrasound unit within the same morning of MRI examination. Two researchers were involved in data collection of these two examinations. The COL method was used to measure the coronal curvature in ultrasound image, compared with the Cobb method in MRI. The intra- and inter-rater reliability of the COL method was evaluated by intra-class correlation coefficient (ICC). The validity of this method was analyzed by paired Student’s t-test, Bland–Altman statistics and Pearson correlation coefficient. The level of significance was set as 0.05. Results The COL method showed high intra- and inter-rater reliabilities (both with ICC (2, K) >0.9, p<0.05) to measure the coronal curvature. Compared with Cobb method, COL method showed no significant difference (p<0.05) when measuring coronal curvature. Furthermore, Bland-Altman method demonstrated an agreement between these two methods, and Pearson’s correlation coefficient (r) was high (r>0.9, p<0.05). Conclusion The ultrasound imaging could provide a reliable and valid measurement of spinal curvature in the coronal plane using the COL method. Further research is needed to validate the proposed ultrasound measurement in larger clinical trial and to optimize the ultrasound scanning and measuring procedure.
Collapse
Affiliation(s)
- Q. Wang
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - M. Li
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Edmond H. M. Lou
- Department of Surgery, Glenrose Rehabilitation Research Centre, University of Alberta, Edmonton, Canada
| | - M. S. Wong
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- * E-mail:
| |
Collapse
|
22
|
Cheung CWJ, Zhou GQ, Law SY, Mak TM, Lai KL, Zheng YP. Ultrasound Volume Projection Imaging for Assessment of Scoliosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1760-1768. [PMID: 25594962 DOI: 10.1109/tmi.2015.2390233] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The standing radiograph is used as a gold standard to diagnose spinal deformity including scoliosis, a medical condition defined as lateral spine curvature > 10°. However, the health concern of X-ray and large inter-observer variation of measurements on X-ray images have significantly restricted its application, particularly for scoliosis screening and close follow-up for adolescent patients. In this study, a radiation-free freehand 3-D ultrasound system was developed for scoliosis assessment using a volume projection imaging method. Based on the obtained coronal view images, two measurement methods were proposed using transverse process and spinous profile as landmarks, respectively. As a reliability study, 36 subjects (age: 30.1 ±14.5; male: 12; female: 24) with different degrees of scoliosis were scanned using the system to test the inter- and intra-observer repeatability. The intra- and inter-observer tests indicated that the new assessment methods were repeatable, with ICC larger than 0.92. Small intra- and inter-observer variations of measuring spine curvature were observed for the two measurement methods (intra-: 1.4 ±1.0° and 1.4 ±1.1°; inter-: 2.2 ±1.6° and 2.5 ±1.6°). The results also showed that the spinal curvature obtained by the new method had good linear correlations with X-ray Cobb's method (R2 = 0.8, p < 0.001, 29 subjects). These results suggested that the ultrasound volume projection imaging method can be a promising approach for the assessment of scoliosis, and further research should be followed up to demonstrate its potential clinical applications for mass screening and curve progression and treatment outcome monitoring of scoliosis patients.
Collapse
|
23
|
Freehand three-dimensional ultrasound system for assessment of scoliosis. J Orthop Translat 2015; 3:123-133. [PMID: 30035049 PMCID: PMC5982385 DOI: 10.1016/j.jot.2015.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022] Open
Abstract
Background/Objective Standing radiograph with Cobb's method is routinely used to diagnose scoliosis, a medical condition defined as a lateral spine curvature > 10° with concordant vertebral rotation. However, radiation hazard and two-dimensional (2-D) viewing of 3-D anatomy restrict the application of radiograph in scoliosis examination. Methods In this study, a freehand 3-D ultrasound system was developed for the radiation-free assessment of scoliosis. Bony landmarks of the spine were manually extracted from a series of ultrasound images with their spatial information recorded to form a 3-D spine model for measuring its curvature. To validate its feasibility, in vivo measurements were conducted in 28 volunteers (age: 28.0 ± 13.0 years, 9 males and 19 females). A significant linear correlation (R2 = 0.86; p < 0.001) was found between the spine curvatures as measured by Cobb's method and the 3-D ultrasound imaging with transverse process and superior articular process as landmarks. The intra- and interobserver tests indicated that the proposed method is repeatable. Results The 3-D ultrasound method using bony landmarks tended to underestimate the deformity, and a proper scaling is required. Nevertheless, this study demonstrated the feasibility of the freehand 3-D ultrasound system to assess scoliosis in the standing posture with the proposed methods and 3-D spine profile. Conclusion Further studies are required to understand the variations that exist between the ultrasound and radiograph results with a larger number of volunteers, and to demonstrate its potential clinical applications for monitoring of scoliosis patients. Through further clinical trials and development, the reported 3-D ultrasound imaging system can potentially be used for scoliosis mass screening and frequent monitoring of progress and treatment outcome because of its radiation-free and easy accessibility feature.
Collapse
|
24
|
Young M, Hill DL, Zheng R, Lou E. Reliability and accuracy of ultrasound measurements with and without the aid of previous radiographs in adolescent idiopathic scoliosis (AIS). EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24:1427-33. [PMID: 25753005 DOI: 10.1007/s00586-015-3855-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/30/2014] [Accepted: 03/01/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE The objectives of this preliminary study were to assess the reliability and accuracy of ultrasound (US) for measuring coronal curvature with and without the aid of a previous radiograph, and to evaluate the ability of US to detect curve progression in adolescent idiopathic scoliosis (AIS) patients. METHODS Four raters measured 20 AIS US images twice at one-week intervals. Intra-rater reliability and correlation with radiograph were investigated with (rater 1) and without (raters 2-4) the aid of a previous radiograph. The center of lamina (COL) method was used to approximate the Cobb angle. RESULTS Thirty-six curves were identified. All raters showed high intra-rater reliability (ICC[2,1] >0.80). With the aid of a previous radiograph, rater 1 showed higher correlation with radiograph (ICC[2,1] = 0.86), better standard error of measurement (SEM = 2.2°), and improved error index of selecting end-vertebrae (EI = 1.34), but no statistical improvement of intra-rater reliability (p > 0.05). For rater 2-4, the range of the ICC[2,1] values between US and radiograph measurements, the SEM value, and the range of the EI values were 0.70°-0.72°, 3.3°, and 1.65°-2.36°, respectively. Specificity and sensitivity of US for detecting curve progression were 0.91 and 0.83, respectively. CONCLUSIONS Using a previous radiograph as a measurement aid helped the user to measure coronal curvature from US images, and improved the accuracy of end-vertebrae selection. US showed high sensitivity and specificity for detecting curve progression, indicating that US may be a suitable, radiation-free alternative for monitoring patients with AIS who have mild or moderate curves.
Collapse
Affiliation(s)
- Michelle Young
- Department of Surgery, University of Alberta, 8440 - 112 Street, Edmonton, AB, T6G 2B7, Canada
| | | | | | | |
Collapse
|
25
|
Intra- and Inter-rater Reliability of Coronal Curvature Measurement for Adolescent Idiopathic Scoliosis Using Ultrasonic Imaging Method-A Pilot Study. Spine Deform 2015; 3:151-158. [PMID: 27927306 DOI: 10.1016/j.jspd.2014.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/15/2014] [Accepted: 08/25/2014] [Indexed: 11/21/2022]
Abstract
STUDY DESIGN Retrospective reliability study of the coronal curvature measurement on ultrasound (US) imaging in adolescent idiopathic scoliosis (AIS). OBJECTIVES To determine the intra- and inter-rater reliability and validity of the coronal curvature measurements obtained from US images. SUMMARY OF BACKGROUND DATA Cobb angle measurements on radiographs are the usual method to diagnose and monitor the progression of scoliosis. Repeated ionizing radiation exposure is a frequent concern of patients and their families. Use of US imaging method to measure coronal curvature in children who have idiopathic scoliosis has not been clinically validated. METHODS The researchers scanned 26 subjects using a medical 3-dimensional US system. Spinal radiographs were obtained on the same day from the local scoliosis clinic. Three raters used the center of lamina method to measure the coronal curvature on the US images twice 1 week apart. The raters also measured the Cobb angle on the radiographs twice. Intra- and inter-rater reliability of the coronal curvature measurement from the US images was analyzed using intra-class correlation coefficients. The correlation coefficient of the US coronal curvature measurements was compared with the Cobb angles. RESULTS The intra-class correlation coefficient (2,1) values of intra- and inter-rater reliability on the US method were greater than 0.80. Standard error of measurement on both of the intra- and inter-rater US methods was less than 2.8°. The correlation coefficient between the US and radiographic methods ranged between 0.78 and 0.84 among 3 raters. CONCLUSIONS The US method illustrated substantial intra- and inter-rater reliability. The measurement difference between radiography and the US method was within the range of clinically acceptable error (5°). The US method may be considered a radiation-free alternative to assess children with scoliosis of mild to moderate severity.
Collapse
|
26
|
Automatic Segmentation of Vertebrae in Ultrasound Images. LECTURE NOTES IN COMPUTER SCIENCE 2015. [DOI: 10.1007/978-3-319-20801-5_37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Quader N, Hodgson A, Abugharbieh R. Confidence Weighted Local Phase Features for Robust Bone Surface Segmentation in Ultrasound. CLINICAL IMAGE-BASED PROCEDURES. TRANSLATIONAL RESEARCH IN MEDICAL IMAGING 2014. [DOI: 10.1007/978-3-319-13909-8_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|