1
|
Hosseinzadehketilateh M, Adami B, Karimian N. Advancements in Continuous Glucose Monitoring: Integrating Deep Learning and ECG Signal. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039424 DOI: 10.1109/embc53108.2024.10781881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This paper presents a novel approach to noninvasive hyperglycemia monitoring utilizing electrocardiograms (ECG) from an extensive database comprising 1119 subjects. Previous research on hyperglycemia or glucose detection using ECG has been constrained by challenges related to generalization and scalability, primarily due to using all subjects' ECG in training without considering unseen subjects-a critical factor for developing methods with effective generalization. We designed a deep neural network model capable of identifying significant features in various spatial locations and examining the interdependencies between different features within each convolutional layer. To accelerate processing speed, we segment the ECG of each user to isolate one heartbeat or one cycle of the ECG. Our model was trained using data from 727 subjects, while 168 were used for validation. The testing phase involved 224 unseen subjects, with a dataset consisting of 9,000 segments. The result indicates that the proposed algorithm effectively detects hyperglycemia with a curve area of 93.05% (AUC), a sensitivity of 83.46%, and a specificity of 86.04%.
Collapse
|
2
|
Zanelli S, Ammi M, Hallab M, El Yacoubi MA. Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:4890. [PMID: 35808386 PMCID: PMC9269150 DOI: 10.3390/s22134890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: Diabetes mellitus (DM) is a chronic, metabolic disease characterized by elevated levels of blood glucose. Recently, some studies approached the diabetes care domain through the analysis of the modifications of cardiovascular system parameters. In fact, cardiovascular diseases are the first leading cause of death in diabetic subjects. Thanks to their cost effectiveness and their ease of use, electrocardiographic (ECG) and photoplethysmographic (PPG) signals have recently been used in diabetes detection, blood glucose estimation and diabetes-related complication detection. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (2) Method: We performed a systematic review based on articles that focus on the use of ECG and PPG signals in diabetes care. The search was focused on keywords related to the topic, such as "Diabetes", "ECG", "PPG", "Machine Learning", etc. This was performed using databases, such as PubMed, Google Scholar, Semantic Scholar and IEEE Xplore. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (3) Results: A total of 78 studies were included. The majority of the selected studies focused on blood glucose estimation (41) and diabetes detection (31). Only 7 studies focused on diabetes complications detection. We present these studies by approach: traditional, machine learning and deep learning approaches. (4) Conclusions: ECG and PPG analysis in diabetes care showed to be very promising. Clinical validation and data processing standardization need to be improved in order to employ these techniques in a clinical environment.
Collapse
Affiliation(s)
- Serena Zanelli
- University of Paris 8, LAGA, CNRS, Institut Galilée, 93200 Saint Denis, France;
- SAMOVAR Telecom SudParis, CNRS, Institut Polytechnique de Paris, 91764 Paris, France;
| | - Mehdi Ammi
- University of Paris 8, LAGA, CNRS, Institut Galilée, 93200 Saint Denis, France;
| | | | - Mounim A. El Yacoubi
- SAMOVAR Telecom SudParis, CNRS, Institut Polytechnique de Paris, 91764 Paris, France;
| |
Collapse
|
3
|
Juneja D, Gupta A, Singh O. Artificial intelligence in critically ill diabetic patients: current status and future prospects. Artif Intell Gastroenterol 2022; 3:66-79. [DOI: 10.35712/aig.v3.i2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
|
4
|
Diouri O, Cigler M, Vettoretti M, Mader JK, Choudhary P, Renard E. Hypoglycaemia detection and prediction techniques: A systematic review on the latest developments. Diabetes Metab Res Rev 2021; 37:e3449. [PMID: 33763974 PMCID: PMC8519027 DOI: 10.1002/dmrr.3449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/08/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The main objective of diabetes control is to correct hyperglycaemia while avoiding hypoglycaemia, especially in insulin-treated patients. Fear of hypoglycaemia is a hurdle to effective correction of hyperglycaemia because it promotes under-dosing of insulin. Strategies to minimise hypoglycaemia include education and training for improved hypoglycaemia awareness and the development of technologies to allow their early detection and thus minimise their occurrence. Patients with impaired hypoglycaemia awareness would benefit the most from these technologies. The purpose of this systematic review is to review currently available or in-development technologies that support detection of hypoglycaemia or hypoglycaemia risk, and identify gaps in the research. Nanomaterial use in sensors is a promising strategy to increase the accuracy of continuous glucose monitoring devices for low glucose values. Hypoglycaemia is associated with changes on vital signs, so electrocardiogram and encephalogram could also be used to detect hypoglycaemia. Accuracy improvements through multivariable measures can make already marketed galvanic skin response devices a good noninvasive alternative. Breath volatile organic compounds can be detected by dogs and devices and alert patients at hypoglycaemia onset, while near-infrared spectroscopy can also be used as a hypoglycaemia alarms. Finally, one of the main directions of research are deep learning algorithms to analyse continuous glucose monitoring data and provide earlier and more accurate prediction of hypoglycaemia. Current developments for early identification of hypoglycaemia risk combine improvements of available 'needle-type' enzymatic glucose sensors and noninvasive alternatives. Patient usability will be essential to demonstrate to allow their implementation for daily use in diabetes management.
Collapse
Affiliation(s)
- Omar Diouri
- Department of Endocrinology, Diabetes, NutritionMontpellier University HospitalMontpellierFrance
- Department of PhysiologyInstitute of Functional Genomics, CNRS, INSERMUniversity of MontpellierMontpellierFrance
| | - Monika Cigler
- Division of Endocrinology and DiabetologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | | | - Julia K. Mader
- Division of Endocrinology and DiabetologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | - Pratik Choudhary
- Department of Diabetes and Nutritional SciencesKing's College LondonLondonUK
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
| | - Eric Renard
- Department of Endocrinology, Diabetes, NutritionMontpellier University HospitalMontpellierFrance
- Department of PhysiologyInstitute of Functional Genomics, CNRS, INSERMUniversity of MontpellierMontpellierFrance
| | | |
Collapse
|
5
|
Hyperglycemia Identification Using ECG in Deep Learning Era. SENSORS 2021; 21:s21186263. [PMID: 34577473 PMCID: PMC8472987 DOI: 10.3390/s21186263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
A growing number of smart wearable biosensors are operating in the medical IoT environment and those that capture physiological signals have received special attention. Electrocardiogram (ECG) is one of the physiological signals used in the cardiovascular and medical fields that has encouraged researchers to discover new non-invasive methods to diagnose hyperglycemia as a personal variable. Over the years, researchers have proposed different techniques to detect hyperglycemia using ECG. In this paper, we propose a novel deep learning architecture that can identify hyperglycemia using heartbeats from ECG signals. In addition, we introduce a new fiducial feature extraction technique that improves the performance of the deep learning classifier. We evaluate the proposed method with ECG data from 1119 different subjects to assess the efficiency of hyperglycemia detection of the proposed work. The result indicates that the proposed algorithm is effective in detecting hyperglycemia with a 94.53% area under the curve (AUC), 87.57% sensitivity, and 85.04% specificity. That performance represents an relative improvement of 53% versus the best model found in the literature. The high sensitivity and specificity achieved by the 10-layer deep neural network proposed in this work provide an excellent indication that ECG possesses intrinsic information that can indicate the level of blood glucose concentration.
Collapse
|
6
|
Rabby MF, Tu Y, Hossen MI, Lee I, Maida AS, Hei X. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. BMC Med Inform Decis Mak 2021; 21:101. [PMID: 33726723 PMCID: PMC7968367 DOI: 10.1186/s12911-021-01462-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. METHODS In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. RESULTS For the OhioT1DM (2018) dataset, containing eight weeks' data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 min and 60 min of prediction horizon (PH), respectively. CONCLUSIONS To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings-the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.
Collapse
Affiliation(s)
- Md Fazle Rabby
- School of Computing and Informatics, The University of Louisiana at Lafayette, Lafayatte, LA 70503 USA
| | - Yazhou Tu
- School of Computing and Informatics, The University of Louisiana at Lafayette, Lafayatte, LA 70503 USA
| | - Md Imran Hossen
- School of Computing and Informatics, The University of Louisiana at Lafayette, Lafayatte, LA 70503 USA
| | - Insup Lee
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Anthony S. Maida
- School of Computing and Informatics, The University of Louisiana at Lafayette, Lafayatte, LA 70503 USA
| | - Xiali Hei
- School of Computing and Informatics, The University of Louisiana at Lafayette, Lafayatte, LA 70503 USA
| |
Collapse
|
7
|
Ngo CQ, Chai R, Jones TW, Nguyen HT. Electroencephalogram Reactivity to Hyperglycemia in Patients with Type 1 Diabetes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5224-5227. [PMID: 33019162 DOI: 10.1109/embc44109.2020.9175485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper is concerned with a study of hyperglycemia on four patients with type 1 diabetes at night time. We investigated the association between hyperglycemic episodes and electroencephalogram (EEG) signals using data from the central and occipital areas. The power spectral density of the brain waves was estimated to compare the difference between hyperglycemia and euglycemia using the hyperglycemic threshold of 8.3 mmol/L. The statistical results showed that alpha and beta bands were more sensitive to hyperglycemic episodes than delta and theta bands. During hyperglycemia, whereas the alpha power increased significantly in the occipital lobe (P<0.005), the power of the beta band increased significantly in all observed channels (P<0.01). Using the Pearson correlation, we assessed the relationship between EEG signals and glycemic episodes. The estimated EEG power levels of the alpha band and the beta band produced a significant correlation against blood glucose levels (P<0.005). These preliminary results show the potential of using EEG signals as a biomarker to detect hyperglycemia.
Collapse
|
8
|
Woldaregay AZ, Årsand E, Botsis T, Albers D, Mamykina L, Hartvigsen G. Data-Driven Blood Glucose Pattern Classification and Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes. J Med Internet Res 2019; 21:e11030. [PMID: 31042157 PMCID: PMC6658321 DOI: 10.2196/11030] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 01/23/2023] Open
Abstract
Background Diabetes mellitus is a chronic metabolic disorder that results in abnormal blood glucose (BG) regulations. The BG level is preferably maintained close to normality through self-management practices, which involves actively tracking BG levels and taking proper actions including adjusting diet and insulin medications. BG anomalies could be defined as any undesirable reading because of either a precisely known reason (normal cause variation) or an unknown reason (special cause variation) to the patient. Recently, machine-learning applications have been widely introduced within diabetes research in general and BG anomaly detection in particular. However, irrespective of their expanding and increasing popularity, there is a lack of up-to-date reviews that materialize the current trends in modeling options and strategies for BG anomaly classification and detection in people with diabetes. Objective This review aimed to identify, assess, and analyze the state-of-the-art machine-learning strategies and their hybrid systems focusing on BG anomaly classification and detection including glycemic variability (GV), hyperglycemia, and hypoglycemia in type 1 diabetes within the context of personalized decision support systems and BG alarm events applications, which are important constituents for optimal diabetes self-management. Methods A rigorous literature search was conducted between September 1 and October 1, 2017, and October 15 and November 5, 2018, through various Web-based databases. Peer-reviewed journals and articles were considered. Information from the selected literature was extracted based on predefined categories, which were based on previous research and further elaborated through brainstorming. Results The initial results were vetted using the title, abstract, and keywords and retrieved 496 papers. After a thorough assessment and screening, 47 articles remained, which were critically analyzed. The interrater agreement was measured using a Cohen kappa test, and disagreements were resolved through discussion. The state-of-the-art classes of machine learning have been developed and tested up to the task and achieved promising performance including artificial neural network, support vector machine, decision tree, genetic algorithm, Gaussian process regression, Bayesian neural network, deep belief network, and others. Conclusions Despite the complexity of BG dynamics, there are many attempts to capture hypoglycemia and hyperglycemia incidences and the extent of an individual’s GV using different approaches. Recently, the advancement of diabetes technologies and continuous accumulation of self-collected health data have paved the way for popularity of machine learning in these tasks. According to the review, most of the identified studies used a theoretical threshold, which suffers from inter- and intrapatient variation. Therefore, future studies should consider the difference among patients and also track its temporal change over time. Moreover, studies should also give more emphasis on the types of inputs used and their associated time lag. Generally, we foresee that these developments might encourage researchers to further develop and test these systems on a large-scale basis.
Collapse
Affiliation(s)
| | - Eirik Årsand
- Norwegian Centre for E-health Research, University Hospital of North Norway, Tromsø, Norway
| | - Taxiarchis Botsis
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Albers
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| | - Lena Mamykina
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| | - Gunnar Hartvigsen
- Department of Computer Science, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Contreras I, Vehi J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J Med Internet Res 2018; 20:e10775. [PMID: 29848472 PMCID: PMC6000484 DOI: 10.2196/10775] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Background Artificial intelligence methods in combination with the latest technologies, including medical devices, mobile computing, and sensor technologies, have the potential to enable the creation and delivery of better management services to deal with chronic diseases. One of the most lethal and prevalent chronic diseases is diabetes mellitus, which is characterized by dysfunction of glucose homeostasis. Objective The objective of this paper is to review recent efforts to use artificial intelligence techniques to assist in the management of diabetes, along with the associated challenges. Methods A review of the literature was conducted using PubMed and related bibliographic resources. Analyses of the literature from 2010 to 2018 yielded 1849 pertinent articles, of which we selected 141 for detailed review. Results We propose a functional taxonomy for diabetes management and artificial intelligence. Additionally, a detailed analysis of each subject category was performed using related key outcomes. This approach revealed that the experiments and studies reviewed yielded encouraging results. Conclusions We obtained evidence of an acceleration of research activity aimed at developing artificial intelligence-powered tools for prediction and prevention of complications associated with diabetes. Our results indicate that artificial intelligence methods are being progressively established as suitable for use in clinical daily practice, as well as for the self-management of diabetes. Consequently, these methods provide powerful tools for improving patients’ quality of life.
Collapse
Affiliation(s)
- Ivan Contreras
- Modeling, Identification and Control Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, Spain
| | - Josep Vehi
- Modeling, Identification and Control Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermadades Metabólicas Asociadas, Girona, Spain
| |
Collapse
|
10
|
Ding S, Schumacher M. Sensor Monitoring of Physical Activity to Improve Glucose Management in Diabetic Patients: A Review. SENSORS 2016; 16:s16040589. [PMID: 27120602 PMCID: PMC4851102 DOI: 10.3390/s16040589] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/11/2022]
Abstract
Diabetic individuals need to tightly control their blood glucose concentration. Several methods have been developed for this purpose, such as the finger-prick or continuous glucose monitoring systems (CGMs). However, these methods present the disadvantage of being invasive. Moreover, CGMs have limited accuracy, notably to detect hypoglycemia. It is also known that physical exercise, and even daily activity, disrupt glucose dynamics and can generate problems with blood glucose regulation during and after exercise. In order to deal with these challenges, devices for monitoring patients’ physical activity are currently under development. This review focuses on non-invasive sensors using physiological parameters related to physical exercise that were used to improve glucose monitoring in type 1 diabetes (T1DM) patients. These devices are promising for diabetes management. Indeed they permit to estimate glucose concentration either based solely on physical activity parameters or in conjunction with CGM or non-invasive CGM (NI-CGM) systems. In these last cases, the vital signals are used to modulate glucose estimations provided by the CGM and NI-CGM devices. Finally, this review indicates possible limitations of these new biosensors and outlines directions for future technologic developments.
Collapse
Affiliation(s)
- Sandrine Ding
- HESAV, University of Applied Sciences and Arts Western Switzerland (HES-SO), Av. Beaumont 21, Lausanne 1011, Switzerland.
| | - Michael Schumacher
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), Techno-Pôle 3, Sierre 3960, Switzerland.
| |
Collapse
|
11
|
Nguyen HH, Nguyen TN, Clout R, Nguyen HT. A novel target following solution for the electric powered hospital bed. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:3569-3572. [PMID: 26737064 DOI: 10.1109/embc.2015.7319164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The paper proposes a novel target following solution for an electric powered hospital bed. First, an improved real-time decoupling multivariable control strategy is introduced to stabilize the overall system during its operation. Environment laser-based data are then collected and pre-processed before engaging a neural network classifier for target detection. Finally, a high-level control algorithm is implemented to guarantee safety condition while the hospital bed tracks its target. The proposed solution is successfully validated through real-time experiments.
Collapse
|