1
|
Miranda Hurtado M, Steinback CD, Davenport MH, Rodriguez-Fernandez M. Increased respiratory modulation of cardiovascular control reflects improved blood pressure regulation in pregnancy. Front Physiol 2023; 14:1070368. [PMID: 37025380 PMCID: PMC10070987 DOI: 10.3389/fphys.2023.1070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Hypertensive pregnancy disorders put the maternal-fetal dyad at risk and are one of the leading causes of morbidity and mortality during pregnancy. Multiple efforts have been made to understand the physiological mechanisms behind changes in blood pressure. Still, to date, no study has focused on analyzing the dynamics of the interactions between the systems involved in blood pressure control. In this work, we aim to address this question by evaluating the phase coherence between different signals using wavelet phase coherence. Electrocardiogram, continuous blood pressure, electrocardiogram-derived respiration, and muscle sympathetic nerve activity signals were obtained from ten normotensive pregnant women, ten normotensive non-pregnant women, and ten pregnant women with preeclampsia during rest and cold pressor test. At rest, normotensive pregnant women showed higher phase coherence in the high-frequency band (0.15-0.4 Hz) between muscle sympathetic nerve activity and the RR interval, blood pressure, and respiration compared to non-pregnant normotensive women. Although normotensive pregnant women showed no phase coherence differences with respect to hypertensive pregnant women at rest, higher phase coherence between the same pairs of variables was found during the cold pressor test. These results suggest that, in addition to the increased sympathetic tone of normotensive pregnant women widely described in the existing literature, there is an increase in cardiac parasympathetic modulation and respiratory-driven modulation of muscle sympathetic nerve activity and blood pressure that could compensate sympathetic increase and make blood pressure control more efficient to maintain it in normal ranges. Moreover, blunted modulation could prevent its buffer effect and produce an increase in blood pressure levels, as observed in the hypertensive women in this study. This initial exploration of cardiorespiratory coupling in pregnancy opens the opportunity to follow up on more in-depth analyses and determine causal influences.
Collapse
Affiliation(s)
- Martín Miranda Hurtado
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Craig D. Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Margie H. Davenport
- Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Maria Rodriguez-Fernandez,
| |
Collapse
|
2
|
Hamaoka T, Blaha C, Luck JC, Leuenberger UA, Sinoway LI, Cui J. Acute effects of sublingual nitroglycerin on cardiovagal and sympathetic baroreflex sensitivity. Am J Physiol Regul Integr Comp Physiol 2021; 321:R525-R536. [PMID: 34378422 DOI: 10.1152/ajpregu.00304.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of nitroglycerin (glyceryl trinitrate, GTN) on baroreflex sensitivity (BRS) are incompletely understood. Moreover, there are no reports evaluating the acute responses in both the sympathetic BRS (SBRS) and the cardiovagal BRS (CBRS) to the administration of sublingual GTN. We hypothesized that sublingual GTN modulates both CBRS and SBRS. In 10 healthy subjects, beat-to-beat heart rate (HR), blood pressure (BP) and muscle sympathetic nerve activity (MSNA) were recorded before and for 10 min after sublingual administration of GTN 0.4 mg. SBRS was evaluated from the relationship between spontaneous variations in diastolic BP and MSNA. CBRS was assessed with the sequence technique. These variables were assessed during baseline, during min 3rd - 6th (Post A) and 7th -10th min (Post B) after GTN administration. Two min after GTN administration, MSNA increased significantly and remained significantly elevated during recording. Compared to baseline, CBRS decreased significantly (Post A: 12.9 ± 1.6 to 7.1 ± 1.0 ms/mmHg, P < 0.05), while SBRS increased significantly (Post A: 0.8 ± 0.2 to 1.5 ± 0.2 units・beat-1・mmHg-1, P < 0.05) with an upward shift of the operating point. There were no differences in these variables between Post A and B. A clinical dose of GTN increased MSNA rapidly through effects on both CBRS and SBRS. These effects should be kept in mind when nitrates are used to clinically treat chest pain and acute coronary syndromes and used as vasodilators in experimental settings.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
3
|
Barbic F, Heusser K, Minonzio M, Shiffer D, Cairo B, Tank J, Jordan J, Diedrich A, Gauger P, Zamuner RA, Porta A, Furlan R. Effects of Prolonged Head-Down Bed Rest on Cardiac and Vascular Baroreceptor Modulation and Orthostatic Tolerance in Healthy Individuals. Front Physiol 2019; 10:1061. [PMID: 31507438 PMCID: PMC6716544 DOI: 10.3389/fphys.2019.01061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Orthostatic intolerance commonly occurs after prolonged bed rest, thus increasing the risk of syncope and falls. Baroreflex-mediated adjustments of heart rate and sympathetic vasomotor activity (muscle sympathetic nerve activity – MSNA) are crucial for orthostatic tolerance. We hypothesized that prolonged bed rest deconditioning alters overall baroreceptor functioning, thereby reducing orthostatic tolerance in healthy volunteers. As part of the European Space Agency Medium-term Bed Rest protocol, 10 volunteers were studied before and after 21 days of −6° head down bed rest (HDBR). In both conditions, subjects underwent ECG, beat-by-beat blood pressure, respiratory activity, and MSNA recordings while supine (REST) and during a 15-min 80° head-up tilt (TILT) followed by a 3-min −10 mmHg stepwise increase of lower body negative pressure to pre-syncope. Cardiac baroreflex sensitivity (cBRS) was obtained in the time (sequence method) and frequency domain (spectrum and cross-spectrum analyses of RR interval and systolic arterial pressure – SAP, variability). Baroreceptor modulation of sympathetic discharge activity to the vessels (sBRS) was estimated by the slope of the regression line between the percentage of MSNA burst occurrence and diastolic arterial pressure. Orthostatic tolerance significantly decreased after HDBR (12 ± 0.6 min) compared to before (21 ± 0.6 min). While supine, heart rate, SAP, and cBRS were unchanged before and after HDBR, sBRS gain was slightly depressed after than before HDBR (sBRS: −6.0 ± 1.1 versus −2.9 ± 1.5 burst% × mmHg−1, respectively). During TILT, HR was higher after than before HDBR (116 ± 4 b/min versus 100 ± 4 b/min, respectively), SAP was unmodified in both conditions, and cBRS indexes were lower after HDBR (α index: 3.4 ± 0.7 ms/mmHg; BRSSEQ 4.0 ± 1.0) than before (α index: 6.4 ± 1.0 ms/mmHg; BRSSEQ 6.8 ± 1.2). sBRS gain was significantly more depressed after HDBR than before (sBRS: −2.3 ± 0.7 versus −4.4 ± 0.4 burst% × mmHg−1, respectively). Our findings suggest that baroreflex-mediated adjustments in heart rate and MSNA are impaired after prolonged bed rest. The mechanism likely contributes to the decrease in orthostatic tolerance.
Collapse
Affiliation(s)
- Franca Barbic
- Humanitas Clinical and Research Center, Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas University, Rozzano, Italy
| | - Karsten Heusser
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Maura Minonzio
- Humanitas Clinical and Research Center, Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas University, Rozzano, Italy
| | - Dana Shiffer
- Humanitas Clinical and Research Center, Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas University, Rozzano, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Jens Tank
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - André Diedrich
- Autonomic Dysfunction Center, Clinical Research Center (CRC), Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Peter Gauger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | | | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico di San Donato, San Donato Milanese, Italy
| | - Raffaello Furlan
- Humanitas Clinical and Research Center, Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas University, Rozzano, Italy
| |
Collapse
|
4
|
Venturelli M, Rampichini S, Coratella G, Limonta E, Bisconti AV, Cè E, Esposito F. Heart and musculoskeletal hemodynamic responses to repetitive bouts of quadriceps static stretching. J Appl Physiol (1985) 2019; 127:376-384. [PMID: 31161884 DOI: 10.1152/japplphysiol.00823.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of sympathetic and parasympathetic activity in relation to the repetitive exposure to static stretching (SS) on heart and musculoskeletal hemodynamics in stretched and resting muscles is still a matter of debate. The aim of the study was to determine cardiac and musculoskeletal hemodynamics to repetitive bouts of unilateral SS. Sympathetic and parasympathetic activity contribution to the central hemodynamics and local difference in circulation of stretched and resting muscles were also investigated. In eight participants, heart rate (HR), cardiac output (CO), mean arterial pressure (MAP), HR variability (HRV), blood pressure variability (BPV), and blood flow in passively stretched limb (SL) and control (CL, resting limb) were measured during five bouts of unilateral SS (45 s of knee flexion and 15 s of knee extension). SS increased sympathetic (~20%) and decreased parasympathetic activity (~30%) with a prevalence of parasympathetic withdrawal. During SS, HR, CO, and MAP increased by ~18 beats/min, ~0.29 l/min, ~12 mmHg, respectively. Peak blood flow in response to the first stretching maneuver increased significantly (+377 ± 95 ml/min) in the SL and reduced significantly (-57 ± 48 ml/min) in the CL. This between-limb difference in local circulation response to SS disappeared after the second SS bout. These results indicate that heart hemodynamic responses to SS are primarily influenced by the parasympathetic withdrawal rather than by the increase in sympathetic activity. The balance between neural and local factors contributing to blood flow regulation was affected by the level of SS exposure, likely associated with differences in the bioavailability of local vasoactive factors throughout the stretching bouts.NEW & NOTEWORTHY Repetitive exposure to static stretching (SS) on heart and musculoskeletal hemodynamics in stretched and remote muscles may be influenced by neural and local factors. We documented that SS-induced heart hemodynamic responses are primarily influenced by parasympathetic withdrawal. The balance between neural and local factors contributing to the regulation of musculoskeletal hemodynamics is dependent on SS exposure possibly because of different local vasoactive factor bioavailability during the subsequent stretching bouts.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Verona, Italy.,Department of Internal Medicine, Section of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Eloisa Limonta
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Angela Valentina Bisconti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,Department of Internal Medicine, Section of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Emiliano Cè
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
5
|
Marchi A, Bari V, De Maria B, Esler M, Lambert E, Baumert M, Porta A. Simultaneous Characterization of Sympathetic and Cardiac Arms of the Baroreflex through Sequence Techniques during Incremental Head-Up Tilt. Front Physiol 2016; 7:438. [PMID: 27746741 PMCID: PMC5041323 DOI: 10.3389/fphys.2016.00438] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
We propose a sympathetic baroreflex (sBR) sequence method for characterizing sBR from spontaneous beat-to-beat fluctuations of muscle sympathetic nerve activity (MSNA) and diastolic arterial pressure (DAP). The method exploits a previously defined MSNA variability quantifying the fluctuations of MSNA burst rate. The method is based on the detection of MSNA and DAP sequences characterized by the contemporaneous DAP increase and MSNA decrease or vice versa. The percentage of sBR sequences (SEQ%sBR) was taken as an indication of the degree of sBR solicitation and the average slope of the regression lines in the (DAP, MSNA) plane was taken as sBR sensitivity (sBRSSEQ) and expressed in bursts.s−1.mmHg−1. sBRSSEQ was compared to a more traditional estimate based on the baroreflex threshold analysis (sBRSBTA). An incremental head-up tilt protocol, carried out in 12 young healthy subjects (age: 20–36 yr, median = 22.5 yr, 9 females) sequentially tilted at 0, 20, 30, 40, 60° table inclinations, was utilized to set the sBR sequence method parameters. Traditional sequence analysis was exploited to estimate cardiac baroreflex (cBR) sensitivity (cBRSSEQ) and percentage of cBR sequences (SEQ%cBR). The head-up tilt induced the progressive increase of SEQ%sBR and SEQ%cBR and gradual decrease of both sBRSSEQ and cBRSSEQ, thus suggesting the gradual rise of the sBR and cBR solicitations and the progressive reduction of their effectiveness with the stimulus. sBRSSEQ was significantly associated with sBRSBTA. sBRSSEQ and cBRSSEQ were significantly correlated as well as SEQ%sBR and SEQ%cBR, even though the correlation was not strong, thus suggesting a certain degree of independence between the baroreflex arms. The proposed sBR sequence approach provides a dynamical characterization of the sBR alternative to more traditional static pharmacological and nonpharmacological methods and fully homogenous with the cBR sequence technique.
Collapse
Affiliation(s)
- Andrea Marchi
- Department of Electronics Information and Bioengineering, Politecnico di MilanoMilan, Italy; Department of Emergency and Intensive Care, San Gerardo HospitalMonza, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan Milan, Italy
| | - Beatrice De Maria
- Department of Electronics Information and Bioengineering, Politecnico di MilanoMilan, Italy; IRCCS Fondazione Salvatore MaugeriMilan, Italy
| | - Murray Esler
- Human Neurotransmitter Laboratory, Baker IDI Heart and Diabetes Institute Melbourne, VIC, Australia
| | - Elisabeth Lambert
- Human Neurotransmitter Laboratory, Baker IDI Heart and Diabetes Institute Melbourne, VIC, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide, SA, Australia
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of MilanMilan, Italy; Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San DonatoMilan, Italy
| |
Collapse
|