1
|
Wang J, Lim CS. Synergistic Multi-Granularity Rough Attention UNet for Polyp Segmentation. J Imaging 2025; 11:92. [PMID: 40278008 PMCID: PMC12027643 DOI: 10.3390/jimaging11040092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Automatic polyp segmentation in colonoscopic images is crucial for the early detection and treatment of colorectal cancer. However, complex backgrounds, diverse polyp morphologies, and ambiguous boundaries make this task difficult. To address these issues, we propose the Synergistic Multi-Granularity Rough Attention U-Net (S-MGRAUNet), which integrates three key modules: the Multi-Granularity Hybrid Filtering (MGHF) module for extracting multi-scale contextual information, the Dynamic Granularity Partition Synergy (DGPS) module for enhancing polyp-background differentiation through adaptive feature interaction, and the Multi-Granularity Rough Attention (MGRA) mechanism for further optimizing boundary recognition. Extensive experiments on the ColonDB and CVC-300 datasets demonstrate that S-MGRAUNet significantly outperforms existing methods while achieving competitive results on the Kvasir-SEG and ClinicDB datasets, validating its segmentation accuracy, robustness, and generalization capability, all while effectively reducing computational complexity. This study highlights the value of multi-granularity feature extraction and attention mechanisms, providing new insights and practical guidance for advancing multi-granularity theories in medical image segmentation.
Collapse
Affiliation(s)
- Jing Wang
- Graduate School of Technology, Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia;
| | | |
Collapse
|
2
|
Tang R, Zhao H, Tong Y, Mu R, Wang Y, Zhang S, Zhao Y, Wang W, Zhang M, Liu Y, Gao J. A frequency attention-embedded network for polyp segmentation. Sci Rep 2025; 15:4961. [PMID: 39929863 PMCID: PMC11811025 DOI: 10.1038/s41598-025-88475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Gastrointestinal polyps are observed and treated under endoscopy, so there presents significant challenges to advance endoscopy imaging segmentation of polyps. Current methodologies often falter in distinguishing complex polyp structures within diverse (mucosal) tissue environments. In this paper, we propose the Frequency Attention-Embedded Network (FAENet), a novel approach leveraging frequency-based attention mechanisms to enhance polyp segmentation accuracy significantly. FAENet ingeniously segregates and processes image data into high and low-frequency components, enabling precise delineation of polyp boundaries and internal structures by integrating intra-component and cross-component attention mechanisms. This method not only preserves essential edge details but also refines the learned representation attentively, ensuring robust segmentation across varied imaging conditions. Comprehensive evaluations on two public datasets, Kvasir-SEG and CVC-ClinicDB, demonstrate FAENet's superiority over several state-of-the-art models in terms of Dice coefficient, Intersection over Union (IoU), sensitivity, and specificity. The results affirm that FAENet's advanced attention mechanisms significantly improve the segmentation quality, outperforming traditional and contemporary techniques. FAENet's success indicates its potential to revolutionize polyp segmentation in clinical practices, fostering diagnosis and efficient treatment of gastrointestinal polyps.
Collapse
Affiliation(s)
- Rui Tang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hejing Zhao
- Research Center on Flood and Drought Disaster Reduction of Ministry of Water Resource, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Water History Department, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yao Tong
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Province Engineering Research Center of TCM Intelligence Health Service, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruihui Mu
- College of Computer and Information, Xinxiang University, Xinxiang, 453000, China
| | - Yuqiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuhao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yao Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Weidong Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Min Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yilin Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Du Y, Jiang Y, Tan S, Liu SQ, Li Z, Li G, Wan X. Highlighted Diffusion Model as Plug-In Priors for Polyp Segmentation. IEEE J Biomed Health Inform 2025; 29:1209-1220. [PMID: 39446534 DOI: 10.1109/jbhi.2024.3485767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Automated polyp segmentation from colonoscopy images is crucial for colorectal cancer diagnosis. The accuracy of such segmentation, however, is challenged by two main factors. First, the variability in polyps' size, shape, and color, coupled with the scarcity of well-annotated data due to the need for specialized manual annotation, hampers the efficacy of existing deep learning methods. Second, concealed polyps often blend with adjacent intestinal tissues, leading to poor contrast that challenges segmentation models. Recently, diffusion models have been explored and adapted for polyp segmentation tasks. However, the significant domain gap between RGB-colonoscopy images and grayscale segmentation masks, along with the low efficiency of the diffusion generation process, hinders the practical implementation of these models. To mitigate these challenges, we introduce the Highlighted Diffusion Model Plus (HDM+), a two-stage polyp segmentation framework. This framework incorporates the Highlighted Diffusion Model (HDM) to provide explicit semantic guidance, thereby enhancing segmentation accuracy. In the initial stage, the HDM is trained using highlighted ground-truth data, which emphasizes polyp regions while suppressing the background in the images. This approach reduces the domain gap by focusing on the image itself rather than on the segmentation mask. In the subsequent second stage, we employ the highlighted features from the trained HDM's U-Net model as plug-in priors for polyp segmentation, rather than generating highlighted images, thereby increasing efficiency. Extensive experiments conducted on six polyp segmentation benchmarks demonstrate the effectiveness of our approach.
Collapse
|
4
|
Song Z, Kang X, Wei X, Li S. Pixel-Centric Context Perception Network for Camouflaged Object Detection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:18576-18589. [PMID: 37819817 DOI: 10.1109/tnnls.2023.3319323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Camouflaged object detection (COD) aims to identify object pixels visually embedded in the background environment. Existing deep learning methods fail to utilize the context information around different pixels adequately and efficiently. In order to solve this problem, a novel pixel-centric context perception network (PCPNet) is proposed, the core of which is to customize the personalized context of each pixel based on the automatic estimation of its surroundings. Specifically, PCPNet first employs an elegant encoder equipped with the designed vital component generation (VCG) module to obtain a set of compact features rich in low-level spatial and high-level semantic information across multiple subspaces. Then, we present a parameter-free pixel importance estimation (PIE) function based on multiwindow information fusion. Object pixels with complex backgrounds will be assigned with higher PIE values. Subsequently, PIE is utilized to regularize the optimization loss. In this way, the network can pay more attention to those pixels with higher PIE values in the decoding stage. Finally, a local continuity refinement module (LCRM) is used to refine the detection results. Extensive experiments on four COD benchmarks, five salient object detection (SOD) benchmarks, and five polyp segmentation benchmarks demonstrate the superiority of PCPNet with respect to other state-of-the-art methods.
Collapse
|
5
|
Liu D, Lu C, Sun H, Gao S. NA-segformer: A multi-level transformer model based on neighborhood attention for colonoscopic polyp segmentation. Sci Rep 2024; 14:22527. [PMID: 39342011 PMCID: PMC11438879 DOI: 10.1038/s41598-024-74123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
In various countries worldwide, the incidence of colon cancer-related deaths has been on the rise in recent years. Early detection of symptoms and identification of intestinal polyps are crucial for improving the cure rate of colon cancer patients. Automated computer-aided diagnosis (CAD) has emerged as a solution to the low efficiency of traditional methods relying on manual diagnosis by physicians. Deep learning is the latest direction of CAD development and has shown promise for colonoscopic polyp segmentation. In this paper, we present a multi-level encoder-decoder architecture for polyp segmentation based on the Transformer architecture, termed NA-SegFormer. To improve the performance of existing Transformer-based segmentation algorithms for edge segmentation on colon polyps, we propose a patch merging module with a neighbor attention mechanism based on overlap patch merging. Since colon tract polyps vary greatly in size and different datasets have different sample sizes, we used a unified focal loss to solve the problem of category imbalance in colon tract polyp data. To assess the effectiveness of our proposed method, we utilized video capsule endoscopy and typical colonoscopy polyp datasets, as well as a dataset containing surgical equipment. On the datasets Kvasir-SEG, Kvasir-Instrument and KvasirCapsule-SEG, the Dice score of our proposed model reached 94.30%, 94.59% and 82.73%, with an accuracy of 98.26%, 99.02% and 81.84% respectively. The proposed method achieved inference speed with an Frame-per-second (FPS) of 125.01. The results demonstrated that our suggested model effectively segmented polyps better than several well-known and latest models. In addition, the proposed method has advantages in trade-off between inference speed and accuracy, and it will be of great significance to real-time colonoscopic polyp segmentation. The code is available at https://github.com/promisedong/NAFormer .
Collapse
Affiliation(s)
- Dong Liu
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou, 423300, China
- School of Computer and Artificial Intelligence, Xiangnan University, Chenzhou, 423300, China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, Chenzhou, 423300, China
| | - Chao Lu
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou, 423300, China
- School of Computer and Artificial Intelligence, Xiangnan University, Chenzhou, 423300, China
| | - Haonan Sun
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou, 423300, China
- College of Software, Jilin University, Changchun, 130012, China
| | - Shouping Gao
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou, 423300, China.
- School of Computer and Artificial Intelligence, Xiangnan University, Chenzhou, 423300, China.
| |
Collapse
|
6
|
Lin Q, Tan W, Cai S, Yan B, Li J, Zhong Y. Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:11142-11156. [PMID: 37028330 DOI: 10.1109/tnnls.2023.3248804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) network for assisting early cancer diagnosis. We introduce a plug-and-play module called self-sampling similar feature disentangling module (FDM) to obtain accurate lesion boundaries. Then, we propose a feature separation loss (FSL) function to separate pathological features from normal ones. Moreover, since physicians make diagnoses with multimodal data, we propose a multimodal cooperative segmentation network with two different modal images as input: white-light images (WLIs) and narrowband images (NBIs). Our FDM and FSL show a good performance for both single-modal and multimodal segmentations. Extensive experiments on five backbones prove that our FDM and FSL can be easily applied to different backbones for a significant lesion segmentation accuracy improvement, and the maximum increase of mean Intersection over Union (mIoU) is 4.58. For colonoscopy, we can achieve up to mIoU of 91.49 on our Dataset A and 84.41 on the three public datasets. For esophagoscopy, mIoU of 64.32 is best achieved on the WLI dataset and 66.31 on the NBI dataset.
Collapse
|
7
|
Huang X, Wang L, Jiang S, Xu L. DHAFormer: Dual-channel hybrid attention network with transformer for polyp segmentation. PLoS One 2024; 19:e0306596. [PMID: 38985710 PMCID: PMC11236112 DOI: 10.1371/journal.pone.0306596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
The accurate early diagnosis of colorectal cancer significantly relies on the precise segmentation of polyps in medical images. Current convolution-based and transformer-based segmentation methods show promise but still struggle with the varied sizes and shapes of polyps and the often low contrast between polyps and their background. This research introduces an innovative approach to confronting the aforementioned challenges by proposing a Dual-Channel Hybrid Attention Network with Transformer (DHAFormer). Our proposed framework features a multi-scale channel fusion module, which excels at recognizing polyps across a spectrum of sizes and shapes. Additionally, the framework's dual-channel hybrid attention mechanism is innovatively conceived to reduce background interference and improve the foreground representation of polyp features by integrating local and global information. The DHAFormer demonstrates significant improvements in the task of polyp segmentation compared to currently established methodologies.
Collapse
Affiliation(s)
- Xuejie Huang
- School of Computer Science and Technology, Xinjiang University, Urumqi, China
| | - Liejun Wang
- School of Computer Science and Technology, Xinjiang University, Urumqi, China
| | - Shaochen Jiang
- School of Computer Science and Technology, Xinjiang University, Urumqi, China
| | - Lianghui Xu
- School of Computer Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
8
|
Ji Z, Li X, Liu J, Chen R, Liao Q, Lyu T, Zhao L. LightCF-Net: A Lightweight Long-Range Context Fusion Network for Real-Time Polyp Segmentation. Bioengineering (Basel) 2024; 11:545. [PMID: 38927781 PMCID: PMC11201063 DOI: 10.3390/bioengineering11060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Automatically segmenting polyps from colonoscopy videos is crucial for developing computer-assisted diagnostic systems for colorectal cancer. Existing automatic polyp segmentation methods often struggle to fulfill the real-time demands of clinical applications due to their substantial parameter count and computational load, especially those based on Transformer architectures. To tackle these challenges, a novel lightweight long-range context fusion network, named LightCF-Net, is proposed in this paper. This network attempts to model long-range spatial dependencies while maintaining real-time performance, to better distinguish polyps from background noise and thus improve segmentation accuracy. A novel Fusion Attention Encoder (FAEncoder) is designed in the proposed network, which integrates Large Kernel Attention (LKA) and channel attention mechanisms to extract deep representational features of polyps and unearth long-range dependencies. Furthermore, a newly designed Visual Attention Mamba module (VAM) is added to the skip connections, modeling long-range context dependencies in the encoder-extracted features and reducing background noise interference through the attention mechanism. Finally, a Pyramid Split Attention module (PSA) is used in the bottleneck layer to extract richer multi-scale contextual features. The proposed method was thoroughly evaluated on four renowned polyp segmentation datasets: Kvasir-SEG, CVC-ClinicDB, BKAI-IGH, and ETIS. Experimental findings demonstrate that the proposed method delivers higher segmentation accuracy in less time, consistently outperforming the most advanced lightweight polyp segmentation networks.
Collapse
Affiliation(s)
- Zhanlin Ji
- Hebei Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan 063210, China; (Z.J.); (X.L.); (J.L.)
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoyu Li
- Hebei Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan 063210, China; (Z.J.); (X.L.); (J.L.)
| | - Jianuo Liu
- Hebei Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan 063210, China; (Z.J.); (X.L.); (J.L.)
| | - Rui Chen
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; (R.C.); (Q.L.)
| | - Qinping Liao
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; (R.C.); (Q.L.)
| | - Tao Lyu
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; (R.C.); (Q.L.)
| | - Li Zhao
- Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Li H, Liu D, Zeng Y, Liu S, Gan T, Rao N, Yang J, Zeng B. Single-Image-Based Deep Learning for Segmentation of Early Esophageal Cancer Lesions. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:2676-2688. [PMID: 38530733 DOI: 10.1109/tip.2024.3379902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Accurate segmentation of lesions is crucial for diagnosis and treatment of early esophageal cancer (EEC). However, neither traditional nor deep learning-based methods up to today can meet the clinical requirements, with the mean Dice score - the most important metric in medical image analysis - hardly exceeding 0.75. In this paper, we present a novel deep learning approach for segmenting EEC lesions. Our method stands out for its uniqueness, as it relies solely on a single input image from a patient, forming the so-called "You-Only-Have-One" (YOHO) framework. On one hand, this "one-image-one-network" learning ensures complete patient privacy as it does not use any images from other patients as the training data. On the other hand, it avoids nearly all generalization-related problems since each trained network is applied only to the same input image itself. In particular, we can push the training to "over-fitting" as much as possible to increase the segmentation accuracy. Our technical details include an interaction with clinical doctors to utilize their expertise, a geometry-based data augmentation over a single lesion image to generate the training dataset (the biggest novelty), and an edge-enhanced UNet. We have evaluated YOHO over an EEC dataset collected by ourselves and achieved a mean Dice score of 0.888, which is much higher as compared to the existing deep-learning methods, thus representing a significant advance toward clinical applications. The code and dataset are available at: https://github.com/lhaippp/YOHO.
Collapse
|
10
|
Li B, Xu Y, Wang Y, Zhang B. DECTNet: Dual Encoder Network combined convolution and Transformer architecture for medical image segmentation. PLoS One 2024; 19:e0301019. [PMID: 38573957 PMCID: PMC10994332 DOI: 10.1371/journal.pone.0301019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/09/2024] [Indexed: 04/06/2024] Open
Abstract
Automatic and accurate segmentation of medical images plays an essential role in disease diagnosis and treatment planning. Convolution neural networks have achieved remarkable results in medical image segmentation in the past decade. Meanwhile, deep learning models based on Transformer architecture also succeeded tremendously in this domain. However, due to the ambiguity of the medical image boundary and the high complexity of physical organization structures, implementing effective structure extraction and accurate segmentation remains a problem requiring a solution. In this paper, we propose a novel Dual Encoder Network named DECTNet to alleviate this problem. Specifically, the DECTNet embraces four components, which are a convolution-based encoder, a Transformer-based encoder, a feature fusion decoder, and a deep supervision module. The convolutional structure encoder can extract fine spatial contextual details in images. Meanwhile, the Transformer structure encoder is designed using a hierarchical Swin Transformer architecture to model global contextual information. The novel feature fusion decoder integrates the multi-scale representation from two encoders and selects features that focus on segmentation tasks by channel attention mechanism. Further, a deep supervision module is used to accelerate the convergence of the proposed method. Extensive experiments demonstrate that, compared to the other seven models, the proposed method achieves state-of-the-art results on four segmentation tasks: skin lesion segmentation, polyp segmentation, Covid-19 lesion segmentation, and MRI cardiac segmentation.
Collapse
Affiliation(s)
- Boliang Li
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yaming Xu
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Bo Zhang
- Sergeant Schools of Army Academy of Armored Forces, Changchun, Jilin, China
| |
Collapse
|
11
|
Xu C, Fan K, Mo W, Cao X, Jiao K. Dual ensemble system for polyp segmentation with submodels adaptive selection ensemble. Sci Rep 2024; 14:6152. [PMID: 38485963 PMCID: PMC10940608 DOI: 10.1038/s41598-024-56264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Colonoscopy is one of the main methods to detect colon polyps, and its detection is widely used to prevent and diagnose colon cancer. With the rapid development of computer vision, deep learning-based semantic segmentation methods for colon polyps have been widely researched. However, the accuracy and stability of some methods in colon polyp segmentation tasks show potential for further improvement. In addition, the issue of selecting appropriate sub-models in ensemble learning for the colon polyp segmentation task still needs to be explored. In order to solve the above problems, we first implement the utilization of multi-complementary high-level semantic features through the Multi-Head Control Ensemble. Then, to solve the sub-model selection problem in training, we propose SDBH-PSO Ensemble for sub-model selection and optimization of ensemble weights for different datasets. The experiments were conducted on the public datasets CVC-ClinicDB, Kvasir, CVC-ColonDB, ETIS-LaribPolypDB and PolypGen. The results show that the DET-Former, constructed based on the Multi-Head Control Ensemble and the SDBH-PSO Ensemble, consistently provides improved accuracy across different datasets. Among them, the Multi-Head Control Ensemble demonstrated superior feature fusion capability in the experiments, and the SDBH-PSO Ensemble demonstrated excellent sub-model selection capability. The sub-model selection capabilities of the SDBH-PSO Ensemble will continue to have significant reference value and practical utility as deep learning networks evolve.
Collapse
Affiliation(s)
- Cun Xu
- Guilin University of Electronic Technology, Guilin, 541000, China
| | - Kefeng Fan
- China Electronics Standardization Institute, Beijing, 100007, China.
| | - Wei Mo
- Guilin University of Electronic Technology, Guilin, 541000, China
| | - Xuguang Cao
- Guilin University of Electronic Technology, Guilin, 541000, China
| | - Kaijie Jiao
- Guilin University of Electronic Technology, Guilin, 541000, China
| |
Collapse
|
12
|
Wang M, An X, Pei Z, Li N, Zhang L, Liu G, Ming D. An Efficient Multi-Task Synergetic Network for Polyp Segmentation and Classification. IEEE J Biomed Health Inform 2024; 28:1228-1239. [PMID: 37155397 DOI: 10.1109/jbhi.2023.3273728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colonoscopy is considered the best diagnostic tool for early detection and resection of polyps, which can effectively prevent consequential colorectal cancer. In clinical practice, segmenting and classifying polyps from colonoscopic images have a great significance since they provide precious information for diagnosis and treatment. In this study, we propose an efficient multi-task synergetic network (EMTS-Net) for concurrent polyp segmentation and classification, and we introduce a polyp classification benchmark for exploring the potential correlations of the above-mentioned two tasks. This framework is composed of an enhanced multi-scale network (EMS-Net) for coarse-grained polyp segmentation, an EMTS-Net (Class) for accurate polyp classification, and an EMTS-Net (Seg) for fine-grained polyp segmentation. Specifically, we first obtain coarse segmentation masks by using EMS-Net. Then, we concatenate these rough masks with colonoscopic images to assist EMTS-Net (Class) in locating and classifying polyps precisely. To further enhance the segmentation performance of polyps, we propose a random multi-scale (RMS) training strategy to eliminate the interference caused by redundant information. In addition, we design an offline dynamic class activation mapping (OFLD CAM) generated by the combined effect of EMTS-Net (Class) and RMS strategy, which optimizes bottlenecks between multi-task networks efficiently and elegantly and helps EMTS-Net (Seg) to perform more accurate polyp segmentation. We evaluate the proposed EMTS-Net on the polyp segmentation and classification benchmarks, and it achieves an average mDice of 0.864 in polyp segmentation and an average AUC of 0.913 with an average accuracy of 0.924 in polyp classification. Quantitative and qualitative evaluations on the polyp segmentation and classification benchmarks demonstrate that our EMTS-Net achieves the best performance and outperforms previous state-of-the-art methods in terms of both efficiency and generalization.
Collapse
|
13
|
Fan K, Xu C, Cao X, Jiao K, Mo W. Tri-branch feature pyramid network based on federated particle swarm optimization for polyp segmentation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:1610-1624. [PMID: 38303480 DOI: 10.3934/mbe.2024070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Deep learning technology has shown considerable potential in various domains. However, due to privacy issues associated with medical data, legal and ethical constraints often result in smaller datasets. The limitations of smaller datasets hinder the applicability of deep learning technology in the field of medical image processing. To address this challenge, we proposed the Federated Particle Swarm Optimization algorithm, which is designed to increase the efficiency of decentralized data utilization in federated learning and to protect privacy in model training. To stabilize the federated learning process, we introduced Tri-branch feature pyramid network (TFPNet), a multi-branch structure model. TFPNet mitigates instability during the aggregation model deployment and ensures fast convergence through its multi-branch structure. We conducted experiments on four different public datasets:CVC-ClinicDB, Kvasir, CVC-ColonDB and ETIS-LaribPolypDB. The experimental results show that the Federated Particle Swarm Optimization algorithm outperforms single dataset training and the Federated Averaging algorithm when using independent scattered data, and TFPNet converges faster and achieves superior segmentation accuracy compared to other models.
Collapse
Affiliation(s)
- Kefeng Fan
- China Electronics Standardization Institute, Beijing 100007, China
| | - Cun Xu
- School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xuguang Cao
- School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Kaijie Jiao
- School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Wei Mo
- School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
14
|
Nduma BN, Nkeonye S, Uwawah TD, Kaur D, Ekhator C, Ambe S. Use of Artificial Intelligence in the Diagnosis of Colorectal Cancer. Cureus 2024; 16:e53024. [PMID: 38410294 PMCID: PMC10895204 DOI: 10.7759/cureus.53024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common forms of cancer. Therefore, diagnosing the condition early and accurately is critical for improved patient outcomes and effective treatment. Recently, artificial intelligence (AI) algorithms such as support vector machine (SVM) and convolutional neural network (CNN) have demonstrated promise in medical image analysis. This paper, conducted from a systematic review perspective, aimed to determine the effectiveness of AI integration in CRC diagnosis, emphasizing accuracy, sensitivity, and specificity. From a methodological perspective, articles that were included were those that had been conducted in the past decade. Also, the articles needed to have been documented in English, with databases such as Embase, PubMed, and Google Scholar used to obtain relevant research studies. Similarly, keywords were used to arrive at relevant articles. These keywords included AI, CRC, specificity, sensitivity, accuracy, efficacy, effectiveness, disease diagnosis, screening, machine learning, area under the curve (AUC), and deep learning. From the results, most scholarly studies contend that AI is superior in medical image analysis, the development of subtle patterns, and decision support. However, while deploying these algorithms, a key theme is that the collaboration between medical experts and AI systems needs to be seamless. In addition, the AI algorithms ought to be refined continuously in the current world of big data and ensure that they undergo rigorous validation to provide more informed decision-making for or against adopting those AI tools in clinical settings. In conclusion, therefore, balancing between human expertise and technological innovation is likely to pave the way for the realization of AI's full potential concerning its promising role in improving CRC diagnosis, upon which there might be significant patient outcome improvements, disease detection, and the achievement of a more effective healthcare system.
Collapse
Affiliation(s)
| | - Stephen Nkeonye
- Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Davinder Kaur
- Internal Medicine, Medical City, North Richland Hills, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Solomon Ambe
- Neurology, Baylor Scott & White Health, McKinney, USA
| |
Collapse
|
15
|
Huang Z, Xie F, Qing W, Wang M, Liu M, Sun D. MGF-net: Multi-channel group fusion enhancing boundary attention for polyp segmentation. Med Phys 2024; 51:407-418. [PMID: 37403578 DOI: 10.1002/mp.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Colonic polyps are the most prevalent neoplastic lesions detected during colorectal cancer screening, and timely detection and excision of these precursor lesions is crucial for preventing multiple malignancies and reducing mortality rates. PURPOSE The pressing need for intelligent polyp detection has led to the development of a high-precision intelligent polyp segmentation network designed to improve polyp screening rates during colonoscopies. METHODS In this study, we employed ResNet50 as the backbone network and embedded a multi-channel grouping fusion encoding module in the third to fifth stages to extract high-level semantic features of polyps. Receptive field modules were utilized to capture multi-scale features, and grouping fusion modules were employed to capture salient features in different group channels, guiding the decoder to generate an initial global mapping with improved accuracy. To refine the segmentation of the initial global mapping, we introduced an enhanced boundary weight attention module that adaptively thresholds the initial global mapping using learnable parameters. A self-attention mechanism was then utilized to calculate the long-distance dependency relationship of the polyp boundary area, resulting in an output feature map with enhanced boundaries that effectively refines the boundary of the target area. RESULTS We carried out contrast experiments of MGF-Net with mainstream polyp segmentation networks on five public datasets of ColonDB, CVC-ColonDB, CVC-612, Kvasir, and ETIS. The results demonstrate that the segmentation accuracy of MGF-Net is significantly improved on the datasets. Furthermore, a hypothesis test was conducted to assess the statistical significance of the computed results. CONCLUSIONS Our proposed MGF-Net outperforms existing mainstream baseline networks and presents a promising solution to the pressing need for intelligent polyp detection. The proposed model is available at https://github.com/xiefanghhh/MGF-NET.
Collapse
Affiliation(s)
- Zhiyong Huang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
| | - Fang Xie
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
| | - Wencheng Qing
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
| | - Mengyao Wang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
| | - Man Liu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
| | - Daming Sun
- Chongqing Engineering Research Center of Medical Electronics and Information, Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
16
|
Zhang W, Lu F, Su H, Hu Y. Dual-branch multi-information aggregation network with transformer and convolution for polyp segmentation. Comput Biol Med 2024; 168:107760. [PMID: 38064849 DOI: 10.1016/j.compbiomed.2023.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/21/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
Computer-Aided Diagnosis (CAD) for polyp detection offers one of the most notable showcases. By using deep learning technologies, the accuracy of polyp segmentation is surpassing human experts. In such CAD process, a critical step is concerned with segmenting colorectal polyps from colonoscopy images. Despite remarkable successes attained by recent deep learning related works, much improvement is still anticipated to tackle challenging cases. For instance, the effects of motion blur and light reflection can introduce significant noise into the image. The same type of polyps has a diversity of size, color and texture. To address such challenges, this paper proposes a novel dual-branch multi-information aggregation network (DBMIA-Net) for polyp segmentation, which is able to accurately and reliably segment a variety of colorectal polyps with efficiency. Specifically, a dual-branch encoder with transformer and convolutional neural networks (CNN) is employed to extract polyp features, and two multi-information aggregation modules are applied in the decoder to fuse multi-scale features adaptively. Two multi-information aggregation modules include global information aggregation (GIA) module and edge information aggregation (EIA) module. In addition, to enhance the representation learning capability of the potential channel feature association, this paper also proposes a novel adaptive channel graph convolution (ACGC). To validate the effectiveness and advantages of the proposed network, we compare it with several state-of-the-art (SOTA) methods on five public datasets. Experimental results consistently demonstrate that the proposed DBMIA-Net obtains significantly superior segmentation performance across six popularly used evaluation matrices. Especially, we achieve 94.12% mean Dice on CVC-ClinicDB dataset which is 4.22% improvement compared to the previous state-of-the-art method PraNet. Compared with SOTA algorithms, DBMIA-Net has a better fitting ability and stronger generalization ability.
Collapse
Affiliation(s)
- Wenyu Zhang
- School of Information Science and Engineering, Lanzhou University, China
| | - Fuxiang Lu
- School of Information Science and Engineering, Lanzhou University, China.
| | - Hongjing Su
- School of Information Science and Engineering, Lanzhou University, China
| | - Yawen Hu
- School of Information Science and Engineering, Lanzhou University, China
| |
Collapse
|
17
|
Ghimire R, Lee SW. MMNet: A Mixing Module Network for Polyp Segmentation. SENSORS (BASEL, SWITZERLAND) 2023; 23:7258. [PMID: 37631792 PMCID: PMC10458640 DOI: 10.3390/s23167258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Traditional encoder-decoder networks like U-Net have been extensively used for polyp segmentation. However, such networks have demonstrated limitations in explicitly modeling long-range dependencies. In such networks, local patterns are emphasized over the global context, as each convolutional kernel focuses on only a local subset of pixels in the entire image. Several recent transformer-based networks have been shown to overcome such limitations. Such networks encode long-range dependencies using self-attention methods and thus learn highly expressive representations. However, due to the computational complexity of modeling the whole image, self-attention is expensive to compute, as there is a quadratic increment in cost with the increase in pixels in the image. Thus, patch embedding has been utilized, which groups small regions of the image into single input features. Nevertheless, these transformers still lack inductive bias, even with the image as a 1D sequence of visual tokens. This results in the inability to generalize to local contexts due to limited low-level features. We introduce a hybrid transformer combined with a convolutional mixing network to overcome computational and long-range dependency issues. A pretrained transformer network is introduced as a feature-extracting encoder, and a mixing module network (MMNet) is introduced to capture the long-range dependencies with a reduced computational cost. Precisely, in the mixing module network, we use depth-wise and 1 × 1 convolution to model long-range dependencies to establish spatial and cross-channel correlation, respectively. The proposed approach is evaluated qualitatively and quantitatively on five challenging polyp datasets across six metrics. Our MMNet outperforms the previous best polyp segmentation methods.
Collapse
Affiliation(s)
- Raman Ghimire
- Pattern Recognition and Machine Learning Lab, Department of IT Convergence Engineering, Gachon University, Seongnam 13557, Republic of Korea;
| | - Sang-Woong Lee
- Pattern Recognition and Machine Learning Lab, Department of AI Software, Gachon University, Seongnam 13557, Republic of Korea
| |
Collapse
|
18
|
Jin Q, Hou H, Zhang G, Li Z. FEGNet: A Feedback Enhancement Gate Network for Automatic Polyp Segmentation. IEEE J Biomed Health Inform 2023; 27:3420-3430. [PMID: 37126617 DOI: 10.1109/jbhi.2023.3272168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Regular colonoscopy is an effective way to prevent colorectal cancer by detecting colorectal polyps. Automatic polyp segmentation significantly aids clinicians in precisely locating polyp areas for further diagnosis. However, polyp segmentation is a challenge problem, since polyps appear in a variety of shapes, sizes and textures, and they tend to have ambiguous boundaries. In this paper, we propose a U-shaped model named Feedback Enhancement Gate Network (FEGNet) for accurate polyp segmentation to overcome these difficulties. Specifically, for the high-level features, we design a novel Recurrent Gate Module (RGM) based on the feedback mechanism, which can refine attention maps without any additional parameters. RGM consists of Feature Aggregation Attention Gate (FAAG) and Multi-Scale Module (MSM). FAAG can aggregate context and feedback information, and MSM is applied for capturing multi-scale information, which is critical for the segmentation task. In addition, we propose a straightforward but effective edge extraction module to detect boundaries of polyps for low-level features, which is used to guide the training of early features. In our experiments, quantitative and qualitative evaluations show that the proposed FEGNet has achieved the best results in polyp segmentation compared to other state-of-the-art models on five colonoscopy datasets.
Collapse
|
19
|
Wu H, Zhao Z, Zhong J, Wang W, Wen Z, Qin J. PolypSeg+: A Lightweight Context-Aware Network for Real-Time Polyp Segmentation. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:2610-2621. [PMID: 35417366 DOI: 10.1109/tcyb.2022.3162873] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Automatic polyp segmentation from colonoscopy videos is a prerequisite for the development of a computer-assisted colon cancer examination and diagnosis system. However, it remains a very challenging task owing to the large variation of polyps, the low contrast between polyps and background, and the blurring boundaries of polyps. More importantly, real-time performance is a necessity of this task, as it is anticipated that the segmented results can be immediately presented to the doctor during the colonoscopy intervention for his/her prompt decision and action. It is difficult to develop a model with powerful representation capability, yielding satisfactory segmentation results and, simultaneously, maintaining real-time performance. In this article, we present a novel lightweight context-aware network, namely, PolypSeg+, attempting to capture distinguishable features of polyps without increasing network complexity and sacrificing time performance. To achieve this, a set of novel lightweight techniques is developed and integrated into the proposed PolypSeg+, including an adaptive scale context (ASC) module equipped with a lightweight attention mechanism to tackle the large-scale variation of polyps, an efficient global context (EGC) module to promote the fusion of low-level and high-level features by excluding background noise and preserving boundary details, and a lightweight feature pyramid fusion (FPF) module to further refine the features extracted from the ASC and EGC. We extensively evaluate the proposed PolypSeg+ on two famous public available datasets for the polyp segmentation task: 1) Kvasir-SEG and 2) CVC-Endoscenestill. The experimental results demonstrate that our PolypSeg+ consistently outperforms other state-of-the-art networks by achieving better segmentation accuracy in much less running time. The code is available at https://github.com/szu-zzb/polypsegplus.
Collapse
|
20
|
Semantic Segmentation of Digestive Abnormalities from WCE Images by Using AttResU-Net Architecture. Life (Basel) 2023; 13:life13030719. [PMID: 36983874 PMCID: PMC10051085 DOI: 10.3390/life13030719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Colorectal cancer is one of the most common malignancies and the leading cause of cancer death worldwide. Wireless capsule endoscopy is currently the most frequent method for detecting precancerous digestive diseases. Thus, precise and early polyps segmentation has significant clinical value in reducing the probability of cancer development. However, the manual examination is a time-consuming and tedious task for doctors. Therefore, scientists have proposed many computational techniques to automatically segment the anomalies from endoscopic images. In this paper, we present an end-to-end 2D attention residual U-Net architecture (AttResU-Net), which concurrently integrates the attention mechanism and residual units into U-Net for further polyp and bleeding segmentation performance enhancement. To reduce outside areas in an input image while emphasizing salient features, AttResU-Net inserts a sequence of attention units among related downsampling and upsampling steps. On the other hand, the residual block propagates information across layers, allowing for the construction of a deeper neural network capable of solving the vanishing gradient issue in each encoder. This improves the channel interdependencies while lowering the computational cost. Multiple publicly available datasets were employed in this work, to evaluate and verify the proposed method. Our highest-performing model was AttResU-Net, on the MICCAI 2017 WCE dataset, which achieved an accuracy of 99.16%, a Dice coefficient of 94.91%, and a Jaccard index of 90.32%. The experiment findings show that the proposed AttResU-Net overcomes its baselines and provides performance comparable to existing polyp segmentation approaches.
Collapse
|
21
|
Mansur A, Saleem Z, Elhakim T, Daye D. Role of artificial intelligence in risk prediction, prognostication, and therapy response assessment in colorectal cancer: current state and future directions. Front Oncol 2023; 13:1065402. [PMID: 36761957 PMCID: PMC9905815 DOI: 10.3389/fonc.2023.1065402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Artificial Intelligence (AI) is a branch of computer science that utilizes optimization, probabilistic and statistical approaches to analyze and make predictions based on a vast amount of data. In recent years, AI has revolutionized the field of oncology and spearheaded novel approaches in the management of various cancers, including colorectal cancer (CRC). Notably, the applications of AI to diagnose, prognosticate, and predict response to therapy in CRC, is gaining traction and proving to be promising. There have also been several advancements in AI technologies to help predict metastases in CRC and in Computer-Aided Detection (CAD) Systems to improve miss rates for colorectal neoplasia. This article provides a comprehensive review of the role of AI in predicting risk, prognosis, and response to therapies among patients with CRC.
Collapse
Affiliation(s)
- Arian Mansur
- Harvard Medical School, Boston, MA, United States
| | | | - Tarig Elhakim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
22
|
Song J, Chen X, Zhu Q, Shi F, Xiang D, Chen Z, Fan Y, Pan L, Zhu W. Global and Local Feature Reconstruction for Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2273-2284. [PMID: 35324437 DOI: 10.1109/tmi.2022.3162111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Learning how to capture long-range dependencies and restore spatial information of down-sampled feature maps are the basis of the encoder-decoder structure networks in medical image segmentation. U-Net based methods use feature fusion to alleviate these two problems, but the global feature extraction ability and spatial information recovery ability of U-Net are still insufficient. In this paper, we propose a Global Feature Reconstruction (GFR) module to efficiently capture global context features and a Local Feature Reconstruction (LFR) module to dynamically up-sample features, respectively. For the GFR module, we first extract the global features with category representation from the feature map, then use the different level global features to reconstruct features at each location. The GFR module establishes a connection for each pair of feature elements in the entire space from a global perspective and transfers semantic information from the deep layers to the shallow layers. For the LFR module, we use low-level feature maps to guide the up-sampling process of high-level feature maps. Specifically, we use local neighborhoods to reconstruct features to achieve the transfer of spatial information. Based on the encoder-decoder architecture, we propose a Global and Local Feature Reconstruction Network (GLFRNet), in which the GFR modules are applied as skip connections and the LFR modules constitute the decoder path. The proposed GLFRNet is applied to four different medical image segmentation tasks and achieves state-of-the-art performance.
Collapse
|
23
|
Shi L, Wang Y, Li Z, Qiumiao W. FRCNet: Feature Refining and Context-Guided Network for Efficient Polyp Segmentation. Front Bioeng Biotechnol 2022; 10:799541. [PMID: 35845422 PMCID: PMC9277544 DOI: 10.3389/fbioe.2022.799541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/16/2022] [Indexed: 01/08/2023] Open
Abstract
Colorectal cancer, also known as rectal cancer, is one of the most common forms of cancer, and it can be completely cured with early diagnosis. The most effective and objective method of screening and diagnosis is colonoscopy. Polyp segmentation plays a crucial role in the diagnosis and treatment of diseases related to the digestive system, providing doctors with detailed auxiliary boundary information during clinical analysis. To this end, we propose a novel light-weight feature refining and context-guided network (FRCNet) for real-time polyp segmentation. In this method, we first employed the enhanced context-calibrated module to extract the most discriminative features by developing long-range spatial dependence through a context-calibrated operation. This operation is helpful to alleviate the interference of background noise and effectively distinguish the target polyps from the background. Furthermore, we designed the progressive context-aware fusion module to dynamically capture multi-scale polyps by collecting multi-range context information. Finally, the multi-scale pyramid aggregation module was used to learn more representative features, and these features were fused to refine the segmented results. Extensive experiments on the Kvasir, ClinicDB, ColonDB, ETIS, and Endoscene datasets demonstrated the effectiveness of the proposed model. Specifically, FRCNet achieves an mIoU of 84.9% and mDice score of 91.5% on the Kvasir dataset with a model size of only 0.78 M parameters, outperforming state-of-the-art methods. Models and codes are available at the footnote.1
Collapse
Affiliation(s)
- Liantao Shi
- School of Automobile and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China.,School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Yufeng Wang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Zhengguo Li
- School of Automobile and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Wen Qiumiao
- Department of Mathematics, School of Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
24
|
Iqbal A, Sharif M, Khan MA, Nisar W, Alhaisoni M. FF-UNet: a U-Shaped Deep Convolutional Neural Network for Multimodal Biomedical Image Segmentation. Cognit Comput 2022; 14:1287-1302. [DOI: 10.1007/s12559-022-10038-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/20/2022] [Indexed: 01/10/2023]
|
25
|
Han J, Xu C, An Z, Qian K, Tan W, Wang D, Fang Q. PRAPNet: A Parallel Residual Atrous Pyramid Network for Polyp Segmentation. SENSORS (BASEL, SWITZERLAND) 2022; 22:4658. [PMID: 35808154 PMCID: PMC9268928 DOI: 10.3390/s22134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023]
Abstract
In a colonoscopy, accurate computer-aided polyp detection and segmentation can help endoscopists to remove abnormal tissue. This reduces the chance of polyps developing into cancer, which is of great importance. In this paper, we propose a neural network (parallel residual atrous pyramid network or PRAPNet) based on a parallel residual atrous pyramid module for the segmentation of intestinal polyp detection. We made full use of the global contextual information of the different regions by the proposed parallel residual atrous pyramid module. The experimental results showed that our proposed global prior module could effectively achieve better segmentation results in the intestinal polyp segmentation task compared with the previously published results. The mean intersection over union and dice coefficient of the model in the Kvasir-SEG dataset were 90.4% and 94.2%, respectively. The experimental results outperformed the scores achieved by the seven classical segmentation network models (U-Net, U-Net++, ResUNet++, praNet, CaraNet, SFFormer-L, TransFuse-L).
Collapse
Affiliation(s)
- Jubao Han
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Chao Xu
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Ziheng An
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Kai Qian
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Wei Tan
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Dou Wang
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Qianqian Fang
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| |
Collapse
|
26
|
Ashkani Chenarlogh V, Shabanzadeh A, Ghelich Oghli M, Sirjani N, Farzin Moghadam S, Akhavan A, Arabi H, Shiri I, Shabanzadeh Z, Sanei Taheri M, Kazem Tarzamni M. Clinical target segmentation using a novel deep neural network: double attention Res-U-Net. Sci Rep 2022; 12:6717. [PMID: 35468984 PMCID: PMC9038725 DOI: 10.1038/s41598-022-10429-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
We introduced Double Attention Res-U-Net architecture to address medical image segmentation problem in different medical imaging system. Accurate medical image segmentation suffers from some challenges including, difficulty of different interest object modeling, presence of noise, and signal dropout throughout the measurement. The base line image segmentation approaches are not sufficient for complex target segmentation throughout the various medical image types. To overcome the issues, a novel U-Net-based model proposed that consists of two consecutive networks with five and four encoding and decoding levels respectively. In each of networks, there are four residual blocks between the encoder-decoder path and skip connections that help the networks to tackle the vanishing gradient problem, followed by the multi-scale attention gates to generate richer contextual information. To evaluate our architecture, we investigated three distinct data-sets, (i.e., CVC-ClinicDB dataset, Multi-site MRI dataset, and a collected ultrasound dataset). The proposed algorithm achieved Dice and Jaccard coefficients of 95.79%, 91.62%, respectively for CRL, and 93.84% and 89.08% for fetal foot segmentation. Moreover, the proposed model outperformed the state-of-the-art U-Net based model on the external CVC-ClinicDB, and multi-site MRI datasets with Dice and Jaccard coefficients of 83%, 75.31% for CVC-ClinicDB, and 92.07% and 87.14% for multi-site MRI dataset, respectively.
Collapse
Affiliation(s)
- Vahid Ashkani Chenarlogh
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
- Department of Electrical and Computer Engineering, National Center for Audiology, Western University, London, Canada
| | - Ali Shabanzadeh
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
| | - Mostafa Ghelich Oghli
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran.
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Nasim Sirjani
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
| | | | - Ardavan Akhavan
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Zahra Shabanzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Sanei Taheri
- Department of Radiology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Tarzamni
- Department of Radiology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Ayidzoe MA, Yu Y, Mensah PK, Cai J, Baagyere EY, Bawah FU. SinoCaps: Recognition of colorectal polyps using sinogram capsule network. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Colorectal cancer is the third most diagnosed malignancy in the world. Polyps (either malignant or benign) are the primary cause of colorectal cancer. However, the diagnosis is susceptive to human error, less effective, and falls below recommended levels in routine clinical procedures. In this paper, a Capsule network enhanced with radon transforms for feature extraction is proposed to improve the feasibility of colorectal cancer recognition. The contribution of this paper lies in the incorporation of the radon transforms in the proposed model to improve the detection of polyps by performing efficient extraction of tomographic features. When trained and tested with the polyp dataset, the proposed model achieved an overall average recognition accuracy of 94.02%, AUC of 97%, and an average precision of 96% . In addition, a posthoc analysis of the results exhibited superior feature extraction capabilities comparable to the state-of-the-art and can contribute to the field of explainable artificial intelligence. The proposed method has a considerable potential to be adopted in clinical trials to eliminate the problems associated with the human diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Mighty Abra Ayidzoe
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Yongbin Yu
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Patrick Kwabena Mensah
- Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Jingye Cai
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Edward Yellakuor Baagyere
- Department of Computer Science, Faculty of Mathematical Sciences, CK Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Faiza Umar Bawah
- Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani, Ghana
| |
Collapse
|
28
|
Qiu H, Ding S, Liu J, Wang L, Wang X. Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer. Curr Oncol 2022; 29:1773-1795. [PMID: 35323346 PMCID: PMC8947571 DOI: 10.3390/curroncol29030146] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Accurate early detection and diagnosis, comprehensive assessment of treatment response, and precise prediction of prognosis are essential to improve the patients’ survival rate. In recent years, due to the explosion of clinical and omics data, and groundbreaking research in machine learning, artificial intelligence (AI) has shown a great application potential in clinical field of CRC, providing new auxiliary approaches for clinicians to identify high-risk patients, select precise and personalized treatment plans, as well as to predict prognoses. This review comprehensively analyzes and summarizes the research progress and clinical application value of AI technologies in CRC screening, diagnosis, treatment, and prognosis, demonstrating the current status of the AI in the main clinical stages. The limitations, challenges, and future perspectives in the clinical implementation of AI are also discussed.
Collapse
Affiliation(s)
- Hang Qiu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Correspondence: (H.Q.); (X.W.)
| | - Shuhan Ding
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Jianbo Liu
- West China School of Medicine, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liya Wang
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Xiaodong Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (H.Q.); (X.W.)
| |
Collapse
|
29
|
Wang D, Chen S, Sun X, Chen Q, Cao Y, Liu B, Liu X. AFP-Mask: Anchor-free Polyp Instance Segmentation in Colonoscopy. IEEE J Biomed Health Inform 2022; 26:2995-3006. [PMID: 35104234 DOI: 10.1109/jbhi.2022.3147686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Colorectal cancer (CRC) is a common and lethal disease. Globally, CRC is the third most commonly diagnosed cancer in males and the second in females. The most effective way to prevent CRC is through using colonoscopy to identify and remove precancerous growths at an early stage. During colonoscopy, a tiny camera at the tip of the endoscope captures a video of the intestinal mucosa of the colon, while a specialized physician examines the lining of the entire colon and checks for any precancerous growths (polyps) through the live feed. The detection and removal of colorectal polyps have been found to be associated with a reduction in mortality from colorectal cancer. However, the false negative rate of polyp detection during colonoscopy is often high even for experienced physicians, due to the high variance in polyp shape, size, texture, color, and illumination, which make them difficult to detect. With recent advances in deep learning based object detection techniques, automated polyp detection shows great potential in helping physicians reduce false positive rate during colonoscopy. In this paper, we propose a novel anchor-free instance segmentation framework that can localize polyps and produce the corresponding instance level masks without using predefined anchor boxes. Our framework consists of two branches: (a) an object detection branch that performs classification and localization, (b) a mask generation branch that produces instance level masks. Instead of predicting a two-dimensional mask directly, we encode it into a compact representation vector, which allows us to incorporate instance segmentation with one-stage bounding-box detectors in a simple yet effective way. Moreover, our proposed encoding method can be trained jointly with object detector. Our experiment results show that our framework achieves a precision of 99.36% and a recall of 96.44% on public datasets, outperforming existing anchor-free instance segmentation methods by at least 2.8% in mIoU on our private dataset.
Collapse
|
30
|
Liang F, Wang S, Zhang K, Liu TJ, Li JN. Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer. World J Gastrointest Oncol 2022; 14:124-152. [PMID: 35116107 PMCID: PMC8790413 DOI: 10.4251/wjgo.v14.i1.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) technology has made leaps and bounds since its invention. AI technology can be subdivided into many technologies such as machine learning and deep learning. The application scope and prospect of different technologies are also totally different. Currently, AI technologies play a pivotal role in the highly complex and wide-ranging medical field, such as medical image recognition, biotechnology, auxiliary diagnosis, drug research and development, and nutrition. Colorectal cancer (CRC) is a common gastrointestinal cancer that has a high mortality, posing a serious threat to human health. Many CRCs are caused by the malignant transformation of colorectal polyps. Therefore, early diagnosis and treatment are crucial to CRC prognosis. The methods of diagnosing CRC are divided into imaging diagnosis, endoscopy, and pathology diagnosis. Treatment methods are divided into endoscopic treatment, surgical treatment, and drug treatment. AI technology is in the weak era and does not have communication capabilities. Therefore, the current AI technology is mainly used for image recognition and auxiliary analysis without in-depth communication with patients. This article reviews the application of AI in the diagnosis, treatment, and prognosis of CRC and provides the prospects for the broader application of AI in CRC.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Shu Wang
- Department of Radiotherapy, Jilin University Second Hospital, Changchun 130041, Jilin Province, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Tong-Jun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
31
|
Cianci P, Restini E. Artificial intelligence in colorectal cancer management. Artif Intell Cancer 2021; 2:79-89. [DOI: 10.35713/aic.v2.i6.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a new branch of computer science involving many disciplines and technologies. Since its application in the medical field, it has been constantly studied and developed. AI includes machine learning and neural networks to create new technologies or to improve existing ones. Various AI supporting systems are available for a personalized and novel strategy for the management of colorectal cancer (CRC). This mini-review aims to summarize the progress of research and possible clinical applications of AI in the investigation, early diagnosis, treatment, and management of CRC, to offer elements of knowledge as a starting point for new studies and future applications.
Collapse
Affiliation(s)
- Pasquale Cianci
- Department of Surgery and Traumatology, ASL BAT, Lorenzo Bonomo Hospital, Andria 76123, Puglia, Italy
| | - Enrico Restini
- Department of Surgery and Traumatology, ASL BAT, Lorenzo Bonomo Hospital, Andria 76123, Puglia, Italy
| |
Collapse
|
32
|
Zhu M, Chen Z, Yuan Y. DSI-Net: Deep Synergistic Interaction Network for Joint Classification and Segmentation With Endoscope Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3315-3325. [PMID: 34033538 DOI: 10.1109/tmi.2021.3083586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Automatic classification and segmentation of wireless capsule endoscope (WCE) images are two clinically significant and relevant tasks in a computer-aided diagnosis system for gastrointestinal diseases. Most of existing approaches, however, considered these two tasks individually and ignored their complementary information, leading to limited performance. To overcome this bottleneck, we propose a deep synergistic interaction network (DSI-Net) for joint classification and segmentation with WCE images, which mainly consists of the classification branch (C-Branch), the coarse segmentation (CS-Branch) and the fine segmentation branches (FS-Branch). In order to facilitate the classification task with the segmentation knowledge, a lesion location mining (LLM) module is devised in C-Branch to accurately highlight lesion regions through mining neglected lesion areas and erasing misclassified background areas. To assist the segmentation task with the classification prior, we propose a category-guided feature generation (CFG) module in FS-Branch to improve pixel representation by leveraging the category prototypes of C-Branch to obtain the category-aware features. In such way, these modules enable the deep synergistic interaction between these two tasks. In addition, we introduce a task interaction loss to enhance the mutual supervision between the classification and segmentation tasks and guarantee the consistency of their predictions. Relying on the proposed deep synergistic interaction mechanism, DSI-Net achieves superior classification and segmentation performance on public dataset in comparison with state-of-the-art methods. The source code is available at https://github.com/CityU-AIM-Group/DSI-Net.
Collapse
|
33
|
Shen Y, Jia X, Pan J, Meng MQH. APRNet: Alternative Prediction Refinement Network for Polyp Segmentation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3114-3117. [PMID: 34891901 DOI: 10.1109/embc46164.2021.9630525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colorectal cancer has become the second leading cause of cancer-related death, attracting considerable interest for automatic polyp segmentation in polyp screening system. Accurate segmentation of polyps from colonoscopy is a challenging task as the polyps diverse in color, size and texture while the boundary between polyp and background is sometimes ambiguous. We propose a novel alternative prediction refinement network (APRNet) to more accurately segment polyps. Based on the UNet architecture, our APRNet aims at exploiting all-level features by alternatively leveraging features from encoder and decoder branch. Specifically, a series of prediction residual refinement modules (PRR) learn the residual and progressively refine the segmentation at various resolution. The proposed APRNet is evaluated on two benchmark datasets and achieves new state-of-the-art performance with a dice of 91.33% and an accuracy of 97.31% on the Kvasir-SEG dataset, and a dice of 86.33% and an accuracy of 97.12% on the EndoScene dataset.Clinical relevance- This work proposes an automatic and accurate polyp segmentation algorithm that achieves new state- of-the-art performance, which can potentially act as an observer pointing out polyps in colonoscopy procedure.
Collapse
|
34
|
Yeung M, Sala E, Schönlieb CB, Rundo L. Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy. Comput Biol Med 2021; 137:104815. [PMID: 34507156 PMCID: PMC8505797 DOI: 10.1016/j.compbiomed.2021.104815] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colonoscopy remains the gold-standard screening for colorectal cancer. However, significant miss rates for polyps have been reported, particularly when there are multiple small adenomas. This presents an opportunity to leverage computer-aided systems to support clinicians and reduce the number of polyps missed. METHOD In this work we introduce the Focus U-Net, a novel dual attention-gated deep neural network, which combines efficient spatial and channel-based attention into a single Focus Gate module to encourage selective learning of polyp features. The Focus U-Net incorporates several further architectural modifications, including the addition of short-range skip connections and deep supervision. Furthermore, we introduce the Hybrid Focal loss, a new compound loss function based on the Focal loss and Focal Tversky loss, designed to handle class-imbalanced image segmentation. For our experiments, we selected five public datasets containing images of polyps obtained during optical colonoscopy: CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, ETIS-Larib PolypDB and EndoScene test set. We first perform a series of ablation studies and then evaluate the Focus U-Net on the CVC-ClinicDB and Kvasir-SEG datasets separately, and on a combined dataset of all five public datasets. To evaluate model performance, we use the Dice similarity coefficient (DSC) and Intersection over Union (IoU) metrics. RESULTS Our model achieves state-of-the-art results for both CVC-ClinicDB and Kvasir-SEG, with a mean DSC of 0.941 and 0.910, respectively. When evaluated on a combination of five public polyp datasets, our model similarly achieves state-of-the-art results with a mean DSC of 0.878 and mean IoU of 0.809, a 14% and 15% improvement over the previous state-of-the-art results of 0.768 and 0.702, respectively. CONCLUSIONS This study shows the potential for deep learning to provide fast and accurate polyp segmentation results for use during colonoscopy. The Focus U-Net may be adapted for future use in newer non-invasive colorectal cancer screening and more broadly to other biomedical image segmentation tasks similarly involving class imbalance and requiring efficiency.
Collapse
Affiliation(s)
- Michael Yeung
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom; School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, United Kingdom.
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, CB2 0RE, United Kingdom.
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom.
| | - Leonardo Rundo
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, CB2 0RE, United Kingdom.
| |
Collapse
|
35
|
Zhou J, Hu N, Huang ZY, Song B, Wu CC, Zeng FX, Wu M. Application of artificial intelligence in gastrointestinal disease: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1188. [PMID: 34430629 PMCID: PMC8350704 DOI: 10.21037/atm-21-3001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
Objective We collected evidence on the application of artificial intelligence (AI) in gastroenterology field. The review was carried out from two aspects of endoscopic types and gastrointestinal diseases, and briefly summarized the challenges and future directions in this field. Background Due to the advancement of computational power and a surge of available data, a solid foundation has been laid for the growth of AI. Specifically, varied machine learning (ML) techniques have been emerging in endoscopic image analysis. To improve the accuracy and efficiency of clinicians, AI has been widely applied to gastrointestinal endoscopy. Methods PubMed electronic database was searched using the keywords containing “AI”, “ML”, “deep learning (DL)”, “convolution neural network”, “endoscopy (such as white light endoscopy (WLE), narrow band imaging (NBI) endoscopy, magnifying endoscopy with narrow band imaging (ME-NBI), chromoendoscopy, endocytoscopy (EC), and capsule endoscopy (CE))”. Search results were assessed for relevance and then used for detailed discussion. Conclusions This review described the basic knowledge of AI, ML, and DL, and summarizes the application of AI in various endoscopes and gastrointestinal diseases. Finally, the challenges and directions of AI in clinical application were discussed. At present, the application of AI has solved some clinical problems, but more still needs to be done.
Collapse
Affiliation(s)
- Jun Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Na Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Cheng Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan-Xin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
36
|
Automatic Polyp Segmentation in Colonoscopy Images Using a Modified Deep Convolutional Encoder-Decoder Architecture. SENSORS 2021; 21:s21165630. [PMID: 34451072 PMCID: PMC8402594 DOI: 10.3390/s21165630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
Colorectal cancer has become the third most commonly diagnosed form of cancer, and has the second highest fatality rate of cancers worldwide. Currently, optical colonoscopy is the preferred tool of choice for the diagnosis of polyps and to avert colorectal cancer. Colon screening is time-consuming and highly operator dependent. In view of this, a computer-aided diagnosis (CAD) method needs to be developed for the automatic segmentation of polyps in colonoscopy images. This paper proposes a modified SegNet Visual Geometry Group-19 (VGG-19), a form of convolutional neural network, as a CAD method for polyp segmentation. The modifications include skip connections, 5 × 5 convolutional filters, and the concatenation of four dilated convolutions applied in parallel form. The CVC-ClinicDB, CVC-ColonDB, and ETIS-LaribPolypDB databases were used to evaluate the model, and it was found that our proposed polyp segmentation model achieved an accuracy, sensitivity, specificity, precision, mean intersection over union, and dice coefficient of 96.06%, 94.55%, 97.56%, 97.48%, 92.3%, and 95.99%, respectively. These results indicate that our model performs as well as or better than previous schemes in the literature. We believe that this study will offer benefits in terms of the future development of CAD tools for polyp segmentation for colorectal cancer diagnosis and management. In the future, we intend to embed our proposed network into a medical capsule robot for practical usage and try it in a hospital setting with clinicians.
Collapse
|
37
|
Su H, Lin B, Huang X, Li J, Jiang K, Duan X. MBFFNet: Multi-Branch Feature Fusion Network for Colonoscopy. Front Bioeng Biotechnol 2021; 9:696251. [PMID: 34336808 PMCID: PMC8317500 DOI: 10.3389/fbioe.2021.696251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Colonoscopy is currently one of the main methods for the detection of rectal polyps, rectal cancer, and other diseases. With the rapid development of computer vision, deep learning-based semantic segmentation methods can be applied to the detection of medical lesions. However, it is challenging for current methods to detect polyps with high accuracy and real-time performance. To solve this problem, we propose a multi-branch feature fusion network (MBFFNet), which is an accurate real-time segmentation method for detecting colonoscopy. First, we use UNet as the basis of our model architecture and adopt stepwise sampling with channel multiplication to integrate features, which decreases the number of flops caused by stacking channels in UNet. Second, to improve model accuracy, we extract features from multiple layers and resize feature maps to the same size in different ways, such as up-sampling and pooling, to supplement information lost in multiplication-based up-sampling. Based on mIOU and Dice loss with cross entropy (CE), we conduct experiments in both CPU and GPU environments to verify the effectiveness of our model. The experimental results show that our proposed MBFFNet is superior to the selected baselines in terms of accuracy, model size, and flops. mIOU, F score, and Dice loss with CE reached 0.8952, 0.9450, and 0.1602, respectively, which were better than those of UNet, UNet++, and other networks. Compared with UNet, the flop count decreased by 73.2%, and the number of participants also decreased. The actual segmentation effect of MBFFNet is only lower than that of PraNet, the number of parameters is 78.27% of that of PraNet, and the flop count is 0.23% that of PraNet. In addition, experiments on other types of medical tasks show that MBFFNet has good potential for general application in medical image segmentation.
Collapse
Affiliation(s)
- Houcheng Su
- College of Information Engineering, Sichuan Agricultural University, Ya’an, China
| | - Bin Lin
- College of Information Engineering, Sichuan Agricultural University, Ya’an, China
| | - Xiaoshuang Huang
- College of Information Engineering, Sichuan Agricultural University, Ya’an, China
| | - Jiao Li
- College of Information Engineering, Sichuan Agricultural University, Ya’an, China
| | - Kailin Jiang
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Xuliang Duan
- College of Information Engineering, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
38
|
Jha D, Smedsrud PH, Johansen D, de Lange T, Johansen HD, Halvorsen P, Riegler MA. A Comprehensive Study on Colorectal Polyp Segmentation With ResUNet++, Conditional Random Field and Test-Time Augmentation. IEEE J Biomed Health Inform 2021; 25:2029-2040. [PMID: 33400658 DOI: 10.1109/jbhi.2021.3049304] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.
Collapse
|
39
|
Patel K, Bur AM, Wang G. Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation. PROCEEDINGS OF THE INTERNATIONAL ROBOTS & VISION CONFERENCE. INTERNATIONAL ROBOTS & VISION CONFERENCE 2021; 2021:181-188. [PMID: 34368816 PMCID: PMC8341462 DOI: 10.1109/crv52889.2021.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Colonoscopy is a procedure to detect colorectal polyps which are the primary cause for developing colorectal cancer. However, polyp segmentation is a challenging task due to the diverse shape, size, color, and texture of polyps, shuttle difference between polyp and its background, as well as low contrast of the colonoscopic images. To address these challenges, we propose a feature enhancement network for accurate polyp segmentation in colonoscopy images. Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM). Furthermore, instead of directly adding encoder features to the respective decoder layer, we introduce an Adaptive Global Context Module (AGCM), which focuses only on the encoder's significant and hard fine-grained features. The integration of these two modules improves the quality of features layer by layer, which in turn enhances the final feature representation. The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.
Collapse
Affiliation(s)
- Krushi Patel
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence KS, USA, 66045
| | - Andrés M Bur
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas, Kansas City, Kansas, USA, 66160
| | - Guanghui Wang
- Department of Computer Science, Ryerson University, Toronto ON, Canada, M5B 2K3
| |
Collapse
|
40
|
Yang H, Hu B. Application of artificial intelligence to endoscopy on common gastrointestinal benign diseases. Artif Intell Gastrointest Endosc 2021; 2:25-35. [DOI: 10.37126/aige.v2.i2.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) has been widely involved in every aspect of healthcare in the preclinical stage. In the digestive system, AI has been trained to assist auxiliary examinations including histopathology, endoscopy, ultrasonography, computerized tomography, and magnetic resonance imaging in detection, diagnosis, classification, differentiation, prognosis, and quality control. In the field of endoscopy, the application of AI, such as automatic detection, diagnosis, classification, and invasion depth, in early gastrointestinal (GI) cancers has received wide attention. There is a paucity of studies of AI application on common GI benign diseases based on endoscopy. In the review, we provide an overview of AI applications to endoscopy on common GI benign diseases including in the esophagus, stomach, intestine, and colon. It indicates that AI will gradually become an indispensable part of normal endoscopic detection and diagnosis of common GI benign diseases as clinical data, algorithms, and other related work are constantly repeated and improved.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
41
|
Guo X, Yang C, Liu Y, Yuan Y. Learn to Threshold: ThresholdNet With Confidence-Guided Manifold Mixup for Polyp Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1134-1146. [PMID: 33360986 DOI: 10.1109/tmi.2020.3046843] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The automatic segmentation of polyp in endoscopy images is crucial for early diagnosis and cure of colorectal cancer. Existing deep learning-based methods for polyp segmentation, however, are inadequate due to the limited annotated dataset and the class imbalance problems. Moreover, these methods obtained the final polyp segmentation results by simply thresholding the likelihood maps at an eclectic and equivalent value (often set to 0.5). In this paper, we propose a novel ThresholdNet with a confidence-guided manifold mixup (CGMMix) data augmentation method, mainly for addressing the aforementioned issues in polyp segmentation. The CGMMix conducts manifold mixup at the image and feature levels, and adaptively lures the decision boundary away from the under-represented polyp class with the confidence guidance to alleviate the limited training dataset and the class imbalance problems. Two consistency regularizations, mixup feature map consistency (MFMC) loss and mixup confidence map consistency (MCMC) loss, are devised to exploit the consistent constraints in the training of the augmented mixup data. We then propose a two-branch approach, termed ThresholdNet, to collaborate the segmentation and threshold learning in an alternative training strategy. The threshold map supervision generator (TMSG) is embedded to provide supervision for the threshold map, thereby inducing better optimization of the threshold branch. As a consequence, ThresholdNet is able to calibrate the segmentation result with the learned threshold map. We illustrate the effectiveness of the proposed method on two polyp segmentation datasets, and our methods achieved the state-of-the-art result with 87.307% and 87.879% dice score on the EndoScene dataset and the WCE polyp dataset. The source code is available at https://github.com/Guo-Xiaoqing/ThresholdNet.
Collapse
|
42
|
Tran ST, Cheng CH, Nguyen TT, Le MH, Liu DG. TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation. Healthcare (Basel) 2021; 9:54. [PMID: 33419018 PMCID: PMC7825313 DOI: 10.3390/healthcare9010054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 11/18/2022] Open
Abstract
Deep learning is one of the most effective approaches to medical image processing applications. Network models are being studied more and more for medical image segmentation challenges. The encoder-decoder structure is achieving great success, in particular the Unet architecture, which is used as a baseline architecture for the medical image segmentation networks. Traditional Unet and Unet-based networks still have a limitation that is not able to fully exploit the output features of the convolutional units in the node. In this study, we proposed a new network model named TMD-Unet, which had three main enhancements in comparison with Unet: (1) modifying the interconnection of the network node, (2) using dilated convolution instead of the standard convolution, and (3) integrating the multi-scale input features on the input side of the model and applying a dense skip connection instead of a regular skip connection. Our experiments were performed on seven datasets, including many different medical image modalities such as colonoscopy, electron microscopy (EM), dermoscopy, computed tomography (CT), and magnetic resonance imaging (MRI). The segmentation applications implemented in the paper include EM, nuclei, polyp, skin lesion, left atrium, spleen, and liver segmentation. The dice score of our proposed models achieved 96.43% for liver segmentation, 95.51% for spleen segmentation, 92.65% for polyp segmentation, 94.11% for EM segmentation, 92.49% for nuclei segmentation, 91.81% for left atrium segmentation, and 87.27% for skin lesion segmentation. The experimental results showed that the proposed model was superior to the popular models for all seven applications, which demonstrates the high generality of the proposed model.
Collapse
Affiliation(s)
- Song-Toan Tran
- Program of Electrical and Communications Engineering, Feng Chia University, Taichung 40724, Taiwan; (T.-T.N.); (M.-H.L.); (D.-G.L.)
- Department of Electrical and Electronics, Tra Vinh University, Tra Vinh 87000, Vietnam
| | - Ching-Hwa Cheng
- Department of Electronic Engineering, Feng Chia University, Taichung 40724, Taiwan;
| | - Thanh-Tuan Nguyen
- Program of Electrical and Communications Engineering, Feng Chia University, Taichung 40724, Taiwan; (T.-T.N.); (M.-H.L.); (D.-G.L.)
| | - Minh-Hai Le
- Program of Electrical and Communications Engineering, Feng Chia University, Taichung 40724, Taiwan; (T.-T.N.); (M.-H.L.); (D.-G.L.)
- Department of Electrical and Electronics, Tra Vinh University, Tra Vinh 87000, Vietnam
| | - Don-Gey Liu
- Program of Electrical and Communications Engineering, Feng Chia University, Taichung 40724, Taiwan; (T.-T.N.); (M.-H.L.); (D.-G.L.)
- Department of Electronic Engineering, Feng Chia University, Taichung 40724, Taiwan;
| |
Collapse
|
43
|
Sánchez-Peralta LF, Picón A, Sánchez-Margallo FM, Pagador JB. Unravelling the effect of data augmentation transformations in polyp segmentation. Int J Comput Assist Radiol Surg 2020; 15:1975-1988. [PMID: 32989680 PMCID: PMC7671995 DOI: 10.1007/s11548-020-02262-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Data augmentation is a common technique to overcome the lack of large annotated databases, a usual situation when applying deep learning to medical imaging problems. Nevertheless, there is no consensus on which transformations to apply for a particular field. This work aims at identifying the effect of different transformations on polyp segmentation using deep learning. METHODS A set of transformations and ranges have been selected, considering image-based (width and height shift, rotation, shear, zooming, horizontal and vertical flip and elastic deformation), pixel-based (changes in brightness and contrast) and application-based (specular lights and blurry frames) transformations. A model has been trained under the same conditions without data augmentation transformations (baseline) and for each of the transformation and ranges, using CVC-EndoSceneStill and Kvasir-SEG, independently. Statistical analysis is performed to compare the baseline performance against results of each range of each transformation on the same test set for each dataset. RESULTS This basic method identifies the most adequate transformations for each dataset. For CVC-EndoSceneStill, changes in brightness and contrast significantly improve the model performance. On the contrary, Kvasir-SEG benefits to a greater extent from the image-based transformations, especially rotation and shear. Augmentation with synthetic specular lights also improves the performance. CONCLUSION Despite being infrequently used, pixel-based transformations show a great potential to improve polyp segmentation in CVC-EndoSceneStill. On the other hand, image-based transformations are more suitable for Kvasir-SEG. Problem-based transformations behave similarly in both datasets. Polyp area, brightness and contrast of the dataset have an influence on these differences.
Collapse
Affiliation(s)
| | - Artzai Picón
- Tecnalia Research and Innovation, Zamudio, Spain
| | | | - J Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, Road N-521, km 41.8, 10071, Cáceres, Spain
| |
Collapse
|
44
|
Kudou M, Kosuga T, Otsuji E. Artificial intelligence in gastrointestinal cancer: Recent advances and future perspectives. Artif Intell Gastroenterol 2020; 1:71-85. [DOI: 10.35712/aig.v1.i4.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) using machine or deep learning algorithms is attracting increasing attention because of its more accurate image recognition ability and prediction performance than human-aid analyses. The application of AI models to gastrointestinal (GI) clinical oncology has been investigated for the past decade. AI has the capacity to automatically detect and diagnose GI tumors with similar diagnostic accuracy to expert clinicians. AI may also predict malignant potential, such as tumor histology, metastasis, patient survival, resistance to cancer treatments and the molecular biology of tumors, through image analyses of radiological or pathological imaging data using complex deep learning models beyond human cognition. The introduction of AI-assisted diagnostic systems into clinical settings is expected in the near future. However, limitations associated with the evaluation of GI tumors by AI models have yet to be resolved. Recent studies on AI-assisted diagnostic models of gastric and colorectal cancers in the endoscopic, pathological, and radiological fields were herein reviewed. The limitations and future perspectives for the application of AI systems in clinical settings have also been discussed. With the establishment of a multidisciplinary team containing AI experts in each medical institution and prospective studies, AI-assisted medical systems will become a promising tool for GI cancer.
Collapse
Affiliation(s)
- Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Surgery, Kyoto Okamoto Memorial Hospital, Kyoto 613-0034, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Surgery, Saiseikai Shiga Hospital, Ritto 520-3046, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
45
|
Wang Y, Nie H, He X, Liao Z, Zhou Y, Zhou J, Ou C. The emerging role of super enhancer-derived noncoding RNAs in human cancer. Theranostics 2020; 10:11049-11062. [PMID: 33042269 PMCID: PMC7532672 DOI: 10.7150/thno.49168] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Super enhancers (SEs) are large clusters of adjacent enhancers that drive the expression of genes which regulate cellular identity; SE regions can be enriched with a high density of transcription factors, co-factors, and enhancer-associated epigenetic modifications. Through enhanced activation of their target genes, SEs play an important role in various diseases and conditions, including cancer. Recent studies have shown that SEs not only activate the transcriptional expression of coding genes to directly regulate biological functions, but also drive the transcriptional expression of non-coding RNAs (ncRNAs) to indirectly regulate biological functions. SE-derived ncRNAs play critical roles in tumorigenesis, including malignant proliferation, metastasis, drug resistance, and inflammatory response. Moreover, the abnormal expression of SE-derived ncRNAs is closely related to the clinical and pathological characterization of tumors. In this review, we summarize the functions and roles of SE-derived ncRNAs in tumorigenesis and discuss their prospective applications in tumor therapy. A deeper understanding of the potential mechanism underlying the action of SE-derived ncRNAs in tumorigenesis may provide new strategies for the early diagnosis of tumors and targeted therapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Molecular Targeted Therapy/methods
- Neoplasms/diagnosis
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Precision Medicine/methods
- RNA, Untranslated/analysis
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
Collapse
Affiliation(s)
- Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
46
|
Bagheri M, Mohrekesh M, Tehrani M, Najarian K, Karimi N, Samavi S, Reza Soroushmehr SM. Deep Neural Network based Polyp Segmentation in Colonoscopy Images using a Combination of Color Spaces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6742-6745. [PMID: 31947388 DOI: 10.1109/embc.2019.8856793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death. Colorectal polyps cause most colorectal cancer cases. Colonoscopy is considered as the most common method for diagnosis of colorectal polyps, and early detection and segmentation of them can prevent colorectal cancer. On the other hand, today advances in computer systems persuade researchers all around the world to use computer-aided systems to help physicians in their diagnosis. Many modern types of researches and methods have proposed for this goal, and we have aggregated the methods based on previous convolutional neural networks with more recent networks in this paper to improve the quality of segmentation. We also chose the red channel, green channel and the b* component of CIE-L*a*b* as the input of network to leverage the parameters of segmentation result such as dice and sensitivity. LinkNet is used as the convolutional network, and the results show that it is suitable for segmentation. Performance of our method is evaluated on CVC-ColonDB. The results show that our method outperforms previous works in colorectal polyp segmentation field.
Collapse
|
47
|
Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning. Med Phys 2019; 46:5666-5676. [DOI: 10.1002/mp.13865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 11/07/2022] Open
|
48
|
Fang Y, Chen C, Yuan Y, Tong KY. Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation. LECTURE NOTES IN COMPUTER SCIENCE 2019. [DOI: 10.1007/978-3-030-32239-7_34] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|