1
|
Taleb A, Guigou C, Leclerc S, Lalande A, Bozorg Grayeli A. Image-to-Patient Registration in Computer-Assisted Surgery of Head and Neck: State-of-the-Art, Perspectives, and Challenges. J Clin Med 2023; 12:5398. [PMID: 37629441 PMCID: PMC10455300 DOI: 10.3390/jcm12165398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Today, image-guided systems play a significant role in improving the outcome of diagnostic and therapeutic interventions. They provide crucial anatomical information during the procedure to decrease the size and the extent of the approach, to reduce intraoperative complications, and to increase accuracy, repeatability, and safety. Image-to-patient registration is the first step in image-guided procedures. It establishes a correspondence between the patient's preoperative imaging and the intraoperative data. When it comes to the head-and-neck region, the presence of many sensitive structures such as the central nervous system or the neurosensory organs requires a millimetric precision. This review allows evaluating the characteristics and the performances of different registration methods in the head-and-neck region used in the operation room from the perspectives of accuracy, invasiveness, and processing times. Our work led to the conclusion that invasive marker-based methods are still considered as the gold standard of image-to-patient registration. The surface-based methods are recommended for faster procedures and applied on the surface tissues especially around the eyes. In the near future, computer vision technology is expected to enhance these systems by reducing human errors and cognitive load in the operating room.
Collapse
Affiliation(s)
- Ali Taleb
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
| | - Caroline Guigou
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Otolaryngology Department, University Hospital of Dijon, 21000 Dijon, France
| | - Sarah Leclerc
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
| | - Alain Lalande
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Medical Imaging Department, University Hospital of Dijon, 21000 Dijon, France
| | - Alexis Bozorg Grayeli
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Otolaryngology Department, University Hospital of Dijon, 21000 Dijon, France
| |
Collapse
|
2
|
Farnia P, Makkiabadi B, Alimohamadi M, Najafzadeh E, Basij M, Yan Y, Mehrmohammadi M, Ahmadian A. Photoacoustic-MR Image Registration Based on a Co-Sparse Analysis Model to Compensate for Brain Shift. SENSORS 2022; 22:s22062399. [PMID: 35336570 PMCID: PMC8954240 DOI: 10.3390/s22062399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
Brain shift is an important obstacle to the application of image guidance during neurosurgical interventions. There has been a growing interest in intra-operative imaging to update the image-guided surgery systems. However, due to the innate limitations of the current imaging modalities, accurate brain shift compensation continues to be a challenging task. In this study, the application of intra-operative photoacoustic imaging and registration of the intra-operative photoacoustic with pre-operative MR images are proposed to compensate for brain deformation. Finding a satisfactory registration method is challenging due to the unpredictable nature of brain deformation. In this study, the co-sparse analysis model is proposed for photoacoustic-MR image registration, which can capture the interdependency of the two modalities. The proposed algorithm works based on the minimization of mapping transform via a pair of analysis operators that are learned by the alternating direction method of multipliers. The method was evaluated using an experimental phantom and ex vivo data obtained from a mouse brain. The results of the phantom data show about 63% improvement in target registration error in comparison with the commonly used normalized mutual information method. The results proved that intra-operative photoacoustic images could become a promising tool when the brain shift invalidates pre-operative MRI.
Collapse
Affiliation(s)
- Parastoo Farnia
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417653761, Iran; (P.F.); (B.M.); (E.N.)
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
| | - Bahador Makkiabadi
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417653761, Iran; (P.F.); (B.M.); (E.N.)
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
| | - Maysam Alimohamadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran;
| | - Ebrahim Najafzadeh
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417653761, Iran; (P.F.); (B.M.); (E.N.)
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.B.); (Y.Y.)
| | - Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.B.); (Y.Y.)
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.B.); (Y.Y.)
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
- Correspondence: (M.M.); (A.A.)
| | - Alireza Ahmadian
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417653761, Iran; (P.F.); (B.M.); (E.N.)
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
- Correspondence: (M.M.); (A.A.)
| |
Collapse
|
3
|
Gerard IJ, Kersten-Oertel M, Hall JA, Sirhan D, Collins DL. Brain Shift in Neuronavigation of Brain Tumors: An Updated Review of Intra-Operative Ultrasound Applications. Front Oncol 2021; 10:618837. [PMID: 33628733 PMCID: PMC7897668 DOI: 10.3389/fonc.2020.618837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022] Open
Abstract
Neuronavigation using pre-operative imaging data for neurosurgical guidance is a ubiquitous tool for the planning and resection of oncologic brain disease. These systems are rendered unreliable when brain shift invalidates the patient-image registration. Our previous review in 2015, Brain shift in neuronavigation of brain tumours: A review offered a new taxonomy, classification system, and a historical perspective on the causes, measurement, and pre- and intra-operative compensation of this phenomenon. Here we present an updated review using the same taxonomy and framework, focused on the developments of intra-operative ultrasound-based brain shift research from 2015 to the present (2020). The review was performed using PubMed to identify articles since 2015 with the specific words and phrases: “Brain shift” AND “Ultrasound”. Since 2015, the rate of publication of intra-operative ultrasound based articles in the context of brain shift has increased from 2–3 per year to 8–10 per year. This efficient and low-cost technology and increasing comfort among clinicians and researchers have allowed unique avenues of development. Since 2015, there has been a trend towards more mathematical advancements in the field which is often validated on publicly available datasets from early intra-operative ultrasound research, and may not give a just representation to the intra-operative imaging landscape in modern image-guided neurosurgery. Focus on vessel-based registration and virtual and augmented reality paradigms have seen traction, offering new perspectives to overcome some of the different pitfalls of ultrasound based technologies. Unfortunately, clinical adaptation and evaluation has not seen as significant of a publication boost. Brain shift continues to be a highly prevalent pitfall in maintaining accuracy throughout oncologic neurosurgical intervention and continues to be an area of active research. Intra-operative ultrasound continues to show promise as an effective, efficient, and low-cost solution for intra-operative accuracy management. A major drawback of the current research landscape is that mathematical tool validation based on retrospective data outpaces prospective clinical evaluations decreasing the strength of the evidence. The need for newer and more publicly available clinical datasets will be instrumental in more reliable validation of these methods that reflect the modern intra-operative imaging in these procedures.
Collapse
Affiliation(s)
- Ian J Gerard
- Department of Radiation Oncology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Jeffery A Hall
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Denis Sirhan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - D Louis Collins
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Machado I, Toews M, George E, Unadkat P, Essayed W, Luo J, Teodoro P, Carvalho H, Martins J, Golland P, Pieper S, Frisken S, Golby A, Wells Iii W, Ou Y. Deformable MRI-Ultrasound registration using correlation-based attribute matching for brain shift correction: Accuracy and generality in multi-site data. Neuroimage 2019; 202:116094. [PMID: 31446127 PMCID: PMC6819249 DOI: 10.1016/j.neuroimage.2019.116094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
Intraoperative tissue deformation, known as brain shift, decreases the benefit of using preoperative images to guide neurosurgery. Non-rigid registration of preoperative magnetic resonance (MR) to intraoperative ultrasound (iUS) has been proposed as a means to compensate for brain shift. We focus on the initial registration from MR to predurotomy iUS. We present a method that builds on previous work to address the need for accuracy and generality of MR-iUS registration algorithms in multi-site clinical data. High-dimensional texture attributes were used instead of image intensities for image registration and the standard difference-based attribute matching was replaced with correlation-based attribute matching. A strategy that deals explicitly with the large field-of-view mismatch between MR and iUS images was proposed. Key parameters were optimized across independent MR-iUS brain tumor datasets acquired at 3 institutions, with a total of 43 tumor patients and 758 reference landmarks for evaluating the accuracy of the proposed algorithm. Despite differences in imaging protocols, patient demographics and landmark distributions, the algorithm is able to reduce landmark errors prior to registration in three data sets (5.37±4.27, 4.18±1.97 and 6.18±3.38 mm, respectively) to a consistently low level (2.28±0.71, 2.08±0.37 and 2.24±0.78 mm, respectively). This algorithm was tested against 15 other algorithms and it is competitive with the state-of-the-art on multiple datasets. We show that the algorithm has one of the lowest errors in all datasets (accuracy), and this is achieved while sticking to a fixed set of parameters for multi-site data (generality). In contrast, other algorithms/tools of similar performance need per-dataset parameter tuning (high accuracy but lower generality), and those that stick to fixed parameters have larger errors or inconsistent performance (generality but not the top accuracy). Landmark errors were further characterized according to brain regions and tumor types, a topic so far missing in the literature.
Collapse
Affiliation(s)
- Inês Machado
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Matthew Toews
- Department of Systems Engineering, École de Technologie Supérieure, Montreal, Canada
| | - Elizabeth George
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walid Essayed
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jie Luo
- Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Pedro Teodoro
- Escola Superior Náutica Infante D. Henrique, Lisbon, Portugal
| | - Herculano Carvalho
- Department of Neurosurgery, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Jorge Martins
- Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - Steve Pieper
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Isomics, Inc., Cambridge, MA, USA
| | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William Wells Iii
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - Yangming Ou
- Department of Pediatrics and Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|