1
|
Seitz PK, Karger CP, Bendl R, Schwahofer A. Strategy for automatic ultrasound (US) probe positioning in robot-assisted ultrasound guided radiation therapy. Phys Med Biol 2023; 68. [PMID: 36584398 DOI: 10.1088/1361-6560/acaf46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Objective. As part of image-guided radiotherapy, ultrasound-guided radiotherapy is currently already in use and under investigation for robot assisted systems Ipsen 2021. It promises a real-time tumor localization during irradiation (intrafractional) without extra dose. The ultrasound probe is held and guided by a robot. However, there is a lack of basic safety mechanisms and interaction strategies to enable a safe clinical procedure. In this study we investigate potential positioning strategies with safety mechanisms for a safe robot-human-interaction.Approach. A compact setup of ultrasound device, lightweight robot, tracking camera, force sensor and control computer were integrated in a software application to represent a potential USgRT setup. For the realization of a clinical procedure, positioning strategies for the ultrasound head with the help of the robot were developed, implemented, and tested. In addition, basic safety mechanisms for the robot have been implemented, using the integrated force sensor, and have been tested by intentional collisions.Main results. Various positioning methods from manual guidance to completely automated procedures were tested. Robot-guided methods achieved higher positioning accuracy and were faster in execution compared to conventional hand-guided methods. The developed safety mechanisms worked as intended and the detected collision force were below 20 N.Significance. The study demonstrates the feasibility of a new approach for safe robotic ultrasound imaging, with a focus on abdominal usage (liver, prostate, kidney). The safety measures applied here can be extended to other human-robot interactions and present the basic for further studies in medical applications.
Collapse
Affiliation(s)
- Peter Karl Seitz
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,University of Heidelberg, Faculty of Medicine Heidelberg, Heidelberg, Germany.,Medical Informatics, Heilbronn University, Heilbronn, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Rolf Bendl
- Medical Informatics, Heilbronn University, Heilbronn, Germany
| | - Andrea Schwahofer
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Therapanacea, Paris, France
| |
Collapse
|
2
|
Ipsen S, Wulff D, Kuhlemann I, Schweikard A, Ernst F. Towards automated ultrasound imaging-robotic image acquisition in liver and prostate for long-term motion monitoring. Phys Med Biol 2021; 66. [PMID: 33770768 DOI: 10.1088/1361-6560/abf277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/26/2021] [Indexed: 11/12/2022]
Abstract
Real-time volumetric (4D) ultrasound has shown high potential for diagnostic and therapy guidance tasks. One of the main drawbacks of ultrasound imaging to date is the reliance on manual probe positioning and the resulting user dependence. Robotic assistance could help overcome this issue and facilitate the acquisition of long-term image data to observe dynamic processesin vivoover time. The aim of this study is to assess the feasibility of robotic probe manipulation and organ motion quantification during extended imaging sessions. The system consists of a collaborative robot and a 4D ultrasound system providing real-time data access. Five healthy volunteers received liver and prostate scans during free breathing over 30 min. Initial probe placement was performed with real-time remote control with a predefined contact force of 10 N. During scan acquisition, the probe position was continuously adjusted to the body surface motion using impedance control. Ultrasound volumes, the pose of the end-effector and the estimated contact forces were recorded. For motion analysis, one anatomical landmark was manually annotated in a subset of ultrasound frames for each experiment. Probe contact was uninterrupted over the entire scan duration in all ten sessions. Organ drift and imaging artefacts were successfully compensated using remote control. The median contact force along the probe's longitudinal axis was 10.0 N with maximum values of 13.2 and 21.3 N for liver and prostate, respectively. Forces exceeding 11 N only occurred in 0.3% of the time. Probe and landmark motion were more pronounced in the liver, with median interquartile ranges of 1.5 and 9.6 mm, compared to 0.6 and 2.7 mm in the prostate. The results show that robotic ultrasound imaging with dynamic force control can be used for stable, long-term imaging of anatomical regions affected by motion. The system facilitates the acquisition of 4D image datain vivoover extended scanning periods for the first time and holds the potential to be used for motion monitoring for therapy guidance as well as diagnostic tasks.
Collapse
Affiliation(s)
- Svenja Ipsen
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany.,Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Luebeck, Germany
| | - Daniel Wulff
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Ivo Kuhlemann
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| |
Collapse
|
3
|
García-Vázquez V, von Haxthausen F, Jäckle S, Schumann C, Kuhlemann I, Bouchagiar J, Höfer AC, Matysiak F, Hüttmann G, Goltz JP, Kleemann M, Ernst F, Horn M. Navigation and visualisation with HoloLens in endovascular aortic repair. Innov Surg Sci 2018; 3:167-177. [PMID: 31579781 PMCID: PMC6604581 DOI: 10.1515/iss-2018-2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/29/2018] [Indexed: 01/30/2023] Open
Abstract
Introduction Endovascular aortic repair (EVAR) is a minimal-invasive technique that prevents life-threatening rupture in patients with aortic pathologies by implantation of an endoluminal stent graft. During the endovascular procedure, device navigation is currently performed by fluoroscopy in combination with digital subtraction angiography. This study presents the current iterative process of biomedical engineering within the disruptive interdisciplinary project Nav EVAR, which includes advanced navigation, image techniques and augmented reality with the aim of reducing side effects (namely radiation exposure and contrast agent administration) and optimising visualisation during EVAR procedures. This article describes the current prototype developed in this project and the experiments conducted to evaluate it. Methods The current approach of the Nav EVAR project is guiding EVAR interventions in real-time with an electromagnetic tracking system after attaching a sensor on the catheter tip and displaying this information on Microsoft HoloLens glasses. This augmented reality technology enables the visualisation of virtual objects superimposed on the real environment. These virtual objects include three-dimensional (3D) objects (namely 3D models of the skin and vascular structures) and two-dimensional (2D) objects [namely orthogonal views of computed tomography (CT) angiograms, 2D images of 3D vascular models, and 2D images of a new virtual angioscopy whose appearance of the vessel wall follows that shown in ex vivo and in vivo angioscopies]. Specific external markers were designed to be used as landmarks in the registration process to map the tracking data and radiological data into a common space. In addition, the use of real-time 3D ultrasound (US) is also under evaluation in the Nav EVAR project for guiding endovascular tools and updating navigation with intraoperative imaging. US volumes are streamed from the US system to HoloLens and visualised at a certain distance from the probe by tracking augmented reality markers. A human model torso that includes a 3D printed patient-specific aortic model was built to provide a realistic test environment for evaluation of technical components in the Nav EVAR project. The solutions presented in this study were tested by using an US training model and the aortic-aneurysm phantom. Results During the navigation of the catheter tip in the US training model, the 3D models of the phantom surface and vessels were visualised on HoloLens. In addition, a virtual angioscopy was also built from a CT scan of the aortic-aneurysm phantom. The external markers designed for this study were visible in the CT scan and the electromagnetically tracked pointer fitted in each marker hole. US volumes of the US training model were sent from the US system to HoloLens in order to display them, showing a latency of 259±86 ms (mean±standard deviation). Conclusion The Nav EVAR project tackles the problem of radiation exposure and contrast agent administration during EVAR interventions by using a multidisciplinary approach to guide the endovascular tools. Its current state presents several limitations such as the rigid alignment between preoperative data and the simulated patient. Nevertheless, the techniques shown in this study in combination with fibre Bragg gratings and optical coherence tomography are a promising approach to overcome the problems of EVAR interventions.
Collapse
Affiliation(s)
- Verónica García-Vázquez
- Institute for Robotics and Cognitive Systems, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Felix von Haxthausen
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Sonja Jäckle
- Fraunhofer MEVIS - Institute for Medical Image Computing, Lübeck, Germany
| | - Christian Schumann
- Fraunhofer MEVIS - Institute for Medical Image Computing, Bremen, Germany
| | - Ivo Kuhlemann
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Juljan Bouchagiar
- Division of Vascular- and Endovascular Surgery, Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Anna-Catharina Höfer
- Division of Vascular- and Endovascular Surgery, Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Florian Matysiak
- Division of Vascular- and Endovascular Surgery, Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Jan Peter Goltz
- Division of Interventional Radiology, Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Markus Kleemann
- Division of Vascular- and Endovascular Surgery, Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Marco Horn
- Division of Vascular- and Endovascular Surgery, Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Vascular Unit, Department of Surgery, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|