1
|
Taylor M, Cheng AB, Hodkinson DJ, Afacan O, Zurakowski D, Bajic D. Body size and brain volumetry in the rat following prolonged morphine administration in infancy and adulthood. FRONTIERS IN PAIN RESEARCH 2023; 4:962783. [PMID: 36923651 PMCID: PMC10008895 DOI: 10.3389/fpain.2023.962783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/20/2023] [Indexed: 02/28/2023] Open
Abstract
Background Prolonged morphine treatment in infancy is associated with a high incidence of opioid tolerance and dependence, but our knowledge of the long-term consequences of this treatment is sparse. Using a rodent model, we examined the (1) short- and (2) long-term effects of prolonged morphine administration in infancy on body weight and brain volume, and (3) we evaluated if subsequent dosing in adulthood poses an increased brain vulnerability. Methods Newborn rats received subcutaneous injections of either morphine or equal volume of saline twice daily for the first two weeks of life. In adulthood, animals received an additional two weeks of saline or morphine injections before undergoing structural brain MRI. After completion of treatment, structural T2-weigthed MRI images were acquired on a 7 T preclinical scanner (Bruker) using a RARE FSE sequence. Total and regional brain volumes were manually extracted from the MRI images using ITK-SNAP (v.3.6). Regions of interest included the brainstem, the cerebellum, as well as the forebrain and its components: the cerebral cortex, hippocampus, and deep gray matter (including basal ganglia, thalamus, hypothalamus, ventral tegmental area). Absolute (cm3) and normalized (as % total brain volume) values were compared using a one-way ANOVA with Tukey HSD post-hoc test. Results Prolonged morphine administration in infancy was associated with lower body weight and globally smaller brain volumes, which was not different between the sexes. In adulthood, females had lower body weights than males, but no difference was observed in brain volumes between treatment groups. Our results are suggestive of no long-term effect of prolonged morphine treatment in infancy with respect to body weight and brain size in either sex. Interestingly, prolonged morphine administration in adulthood was associated with smaller brain volumes that differed by sex only in case of previous exposure to morphine in infancy. Specifically, we report significantly smaller total brain volume of female rats on account of decreased volumes of forebrain and cortex. Conclusions Our study provides insight into the short- and long-term consequences of prolonged morphine administration in an infant rat model and suggests brain vulnerability to subsequent exposure in adulthood that might differ with sex.
Collapse
Affiliation(s)
- Milo Taylor
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard College, Massachusetts Hall, Cambridge, MA, United States
| | - Anya Brooke Cheng
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard College, Massachusetts Hall, Cambridge, MA, United States
| | - Duncan Jack Hodkinson
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, United Kingdom
- Versus Arthritis Pain Centre, University of Nottingham, Nottingham, United Kingdom
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Correspondence: Dusica Bajic
| |
Collapse
|
2
|
Sargolzaei S, Kaushik A, Soltani S, Amini MH, Khalghani MR, Khoshavi N, Sargolzaei A. Preclinical Western Blot in the Era of Digital Transformation and Reproducible Research, an Eastern Perspective. Interdiscip Sci 2021; 13:490-499. [PMID: 34080131 DOI: 10.1007/s12539-021-00442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
The current research is an interdisciplinary endeavor to develop a necessary tool in preclinical protein studies of diseases or disorders through western blotting. In the era of digital transformation and open access principles, an interactive cloud-based database called East-West Blot ( https://rancs-lab.shinyapps.io/WesternBlots ) is designed and developed. The online interactive subject-specific database built on the R shiny platform facilitates a systematic literature search on the specific subject matter, here set to western blot studies of protein regulation in the preclinical model of TBI. The tool summarizes the existing publicly available knowledge through a data visualization technique and easy access to the critical data elements and links to the study itself. The application compiled a relational database of PubMed-indexed western blot studies labeled under HHS public access, reporting downstream protein regulations presented by fluid percussion injury model of traumatic brain injury. The promises of the developed tool include progressing toward implementing the principles of 3Rs (replacement, reduction, and refinement) for humane experiments, cultivating the prerequisites of reproducible research in terms of reporting characteristics, paving the ways for a more collaborative experimental design in basic science, and rendering an up-to-date and summarized perspective of current publicly available knowledge.
Collapse
Affiliation(s)
- Saman Sargolzaei
- Department of Engineering, University of Tennessee at Martin, Martin, TN, USA.
| | - Ajeet Kaushik
- Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Seyed Soltani
- Mechanical Engineering Department, Florida Polytechnic University, Lakeland, FL, USA
| | - M Hadi Amini
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Mohammad Reza Khalghani
- Electrical and Computer Engineering Department, Florida Polytechnic University, Lakeland, FL, USA
| | - Navid Khoshavi
- Computer Science Department, Florida Polytechnic University, Lakeland, FL, USA
| | - Arman Sargolzaei
- Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN, USA
| |
Collapse
|
3
|
Celestine M, Nadkarni NA, Garin CM, Bougacha S, Dhenain M. Sammba-MRI: A Library for Processing SmAll-MaMmal BrAin MRI Data in Python. Front Neuroinform 2020; 14:24. [PMID: 32547380 PMCID: PMC7270712 DOI: 10.3389/fninf.2020.00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/23/2020] [Indexed: 11/23/2022] Open
Abstract
Small-mammal neuroimaging offers incredible opportunities to investigate structural and functional aspects of the brain. Many tools have been developed in the last decade to analyse small animal data, but current softwares are less mature than the available tools that process human brain data. The Python package Sammba-MRI (SmAll-MaMmal BrAin MRI in Python; http://sammba-mri.github.io) allows flexible and efficient use of existing methods and enables fluent scriptable analysis workflows, from raw data conversion to multimodal processing.
Collapse
Affiliation(s)
- Marina Celestine
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Nachiket A Nadkarni
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Clément M Garin
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Salma Bougacha
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France.,UMR-S U1237 Physiopathologie et imagerie des troubles Neurologiques (PhIND), INSERM, Université de Caen-Normandie, GIP Cyceron, Caen, France.,Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Marc Dhenain
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| |
Collapse
|