1
|
Rapid and Sensitive Point of Care Detection of MRSA Genomic DNA by Nanoelectrokinetic Sensors. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9050097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors have shown great potential in realizing rapid, low cost, and portable on-site detection for diseases. This work reports the development of a new bioelectronic sensor called AC electrokinetics-based capacitive (ABC) biosensor, for the detection of genomic DNA (gDNA) of methicillin-resistant Staphylococcus aureus (MRSA). The ABC sensor is based on interdigitated microelectrodes biofunctionalized with oligonucleotide probes. It uses a special AC signal for direct capacitive monitoring of topological change on nanostructured sensor surface, which simultaneously induces dielectrophoretic enrichment of target gDNAs. As a result, rapid and specific detection of gDNA/probe hybridization can be realized with high sensitivity. It requires no signal amplification such as labeling, hybridization chain reaction, or nucleic acid sequence-based amplification. This method involves only simple sample preparation. After optimization of nanostructured sensor surface and signal processing, the ABC sensor demonstrated fast turnaround of results (~10 s detection), excellent sensitivity (a detection limit of 4.7 DNA copies/µL MRSA gDNA), and high specificity, suitable for point of care diagnosis. As a bioelectronic sensor, the developed ABC sensors can be easily adapted for detections of other infectious agents.
Collapse
|