1
|
Haddix C, Bates M, Garcia-Pava S, Salmon Powell E, Sawaki L, Sunderam S. Electroencephalogram features reflect effort corresponding to graded finger extension: implications for hemiparetic stroke. Biomed Phys Eng Express 2025; 11:025022. [PMID: 39832388 DOI: 10.1088/2057-1976/adabeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Brain-computer interfaces (BCIs) offer disabled individuals the means to interact with devices by decoding the electroencephalogram (EEG). However, decoding intent in fine motor tasks can be challenging, especially in stroke survivors with cortical lesions. Here, we attempt to decode graded finger extension from the EEG in stroke patients with left-hand paresis and healthy controls. Participants extended their fingers to one of four levels: low, medium, high, or 'no-go' (none), while hand, muscle (electromyography: EMG), and brain (EEG) activity were monitored. Event-related desynchronization (ERD) was measured as the change in 8-30 Hz EEG power during movement. Classifiers were trained on EEG features, EMG power, or both (EEG+EMG) to decode finger extension, and accuracy assessed via four-fold cross-validation for each hand of each participant. Mean accuracy exceeded chance (25%) for controls (n = 11) at 62% for EMG, 60% for EEG, and 71% for EEG+EMG on the left hand; and 67%, 60%, and 74%, respectively, on the right hand. Accuracies were similar on the unimpaired right hand for the stroke group (n = 3): 61%, 68%, and 78%, respectively. But on the paretic left hand, EMG only discriminated no-go from movement above chance (41%); in contrast, EEG gave 65% accuracy (68% for EEG+EMG), comparable to the non-paretic hand. The median ERD was significant (p < 0.01) over the cortical hand area in both groups and increased with each level of finger extension. But while the ERD favored the hemisphere contralateral to the active hand as expected, it was ipsilateral for the left hand of stroke due to the lesion in the right hemisphere, which may explain its discriminative ability. Hence, the ERD captures effort in finger extension regardless of success or failure at the task; and harnessing residual EMG improves the correlation. This marker could be leveraged in rehabilitative protocols that focus on fine motor control.
Collapse
Affiliation(s)
- Chase Haddix
- F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, United States of America
- Universities Space Research Association, Cleveland, OH, United States of America
| | - Madison Bates
- F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, United States of America
| | - Sarah Garcia-Pava
- F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, United States of America
| | - Elizabeth Salmon Powell
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY 40506, United States of America
| | - Lumy Sawaki
- National Institutes of Health, Bethesda, MD, United States of America
| | - Sridhar Sunderam
- F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, United States of America
| |
Collapse
|
2
|
Kueper N, Kim SK, Kirchner EA. Avoidance of specific calibration sessions in motor intention recognition for exoskeleton-supported rehabilitation through transfer learning on EEG data. Sci Rep 2024; 14:16690. [PMID: 39030206 PMCID: PMC11271642 DOI: 10.1038/s41598-024-65910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024] Open
Abstract
Exoskeleton-based support for patients requires the learning of individual machine-learning models to recognize movement intentions of patients based on the electroencephalogram (EEG). A major issue in EEG-based movement intention recognition is the long calibration time required to train a model. In this paper, we propose a transfer learning approach that eliminates the need for a calibration session. This approach is validated on healthy subjects in this study. We will use the proposed approach in our future rehabilitation application, where the movement intention of the affected arm of a patient can be inferred from the EEG data recorded during bilateral arm movements enabled by the exoskeleton mirroring arm movements from the unaffected to the affected arm. For the initial evaluation, we compared two trained models for predicting unilateral and bilateral movement intentions without applying a classifier transfer. For the main evaluation, we predicted unilateral movement intentions without a calibration session by transferring the classifier trained on data from bilateral movement intentions. Our results showed that the classification performance for the transfer case was comparable to that in the non-transfer case, even with only 4 or 8 EEG channels. Our results contribute to robotic rehabilitation by eliminating the need for a calibration session, since EEG data for training is recorded during the rehabilitation session, and only a small number of EEG channels are required for model training.
Collapse
Affiliation(s)
- Niklas Kueper
- Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), 28359, Bremen, Germany
| | - Su Kyoung Kim
- Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), 28359, Bremen, Germany
| | - Elsa Andrea Kirchner
- Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), 28359, Bremen, Germany.
- Institute of Medical Technology Systems, University of Duisburg-Essen, 47057, Duisburg, Germany.
| |
Collapse
|
3
|
Vidaurre C, Irastorza-Landa N, Sarasola-Sanz A, Insausti-Delgado A, Ray AM, Bibián C, Helmhold F, Mahmoud WJ, Ortego-Isasa I, López-Larraz E, Lozano Peiteado H, Ramos-Murguialday A. Challenges of neural interfaces for stroke motor rehabilitation. Front Hum Neurosci 2023; 17:1070404. [PMID: 37789905 PMCID: PMC10543821 DOI: 10.3389/fnhum.2023.1070404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.
Collapse
Affiliation(s)
- Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | | | | | | | - Andreas M. Ray
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carlos Bibián
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Florian Helmhold
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Wala J. Mahmoud
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | | | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Masengo G, Zhang X, Dong R, Alhassan AB, Hamza K, Mudaheranwa E. Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Front Neurorobot 2023; 16:913748. [PMID: 36714152 PMCID: PMC9875327 DOI: 10.3389/fnbot.2022.913748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Effective control of an exoskeleton robot (ER) using a human-robot interface is crucial for assessing the robot's movements and the force they produce to generate efficient control signals. Interestingly, certain surveys were done to show off cutting-edge exoskeleton robots. The review papers that were previously published have not thoroughly examined the control strategy, which is a crucial component of automating exoskeleton systems. As a result, this review focuses on examining the most recent developments and problems associated with exoskeleton control systems, particularly during the last few years (2017-2022). In addition, the trends and challenges of cooperative control, particularly multi-information fusion, are discussed.
Collapse
Affiliation(s)
- Gilbert Masengo
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China,Department of Mechanical Engineering, Rwanda Polytechnic/Integrated Polytechnic Regional College (IPRC) Karongi, Kigali, Rwanda,*Correspondence: Gilbert Masengo ✉
| | - Xiaodong Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Runlin Dong
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Ahmad B. Alhassan
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Khaled Hamza
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Emmanuel Mudaheranwa
- Department of Mechanical Engineering, Rwanda Polytechnic/Integrated Polytechnic Regional College (IPRC) Karongi, Kigali, Rwanda,Department of Engineering, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Zhang R, Chen Y, Xu Z, Zhang L, Hu Y, Chen M. Recognition of single upper limb motor imagery tasks from EEG using multi-branch fusion convolutional neural network. Front Neurosci 2023; 17:1129049. [PMID: 36908782 PMCID: PMC9992961 DOI: 10.3389/fnins.2023.1129049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Motor imagery-based brain-computer interfaces (MI-BCI) have important application values in the field of neurorehabilitation and robot control. At present, MI-BCI mostly use bilateral upper limb motor tasks, but there are relatively few studies on single upper limb MI tasks. In this work, we conducted studies on the recognition of motor imagery EEG signals of the right upper limb and proposed a multi-branch fusion convolutional neural network (MF-CNN) for learning the features of the raw EEG signals as well as the two-dimensional time-frequency maps at the same time. The dataset used in this study contained three types of motor imagery tasks: extending the arm, rotating the wrist, and grasping the object, 25 subjects were included. In the binary classification experiment between the grasping object and the arm-extending tasks, MF-CNN achieved an average classification accuracy of 78.52% and kappa value of 0.57. When all three tasks were used for classification, the accuracy and kappa value were 57.06% and 0.36, respectively. The comparison results showed that the classification performance of MF-CNN is higher than that of single CNN branch algorithms in both binary-class and three-class classification. In conclusion, MF-CNN makes full use of the time-domain and frequency-domain features of EEG, can improve the decoding accuracy of single limb motor imagery tasks, and it contributes to the application of MI-BCI in motor function rehabilitation training after stroke.
Collapse
Affiliation(s)
- Rui Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yadi Chen
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Zongxin Xu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Lipeng Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yuxia Hu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Mingming Chen
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Yang H, Wan J, Jin Y, Yu X, Fang Y. EEG- and EMG-Driven Poststroke Rehabilitation: A Review. IEEE SENSORS JOURNAL 2022; 22:23649-23660. [DOI: 10.1109/jsen.2022.3220930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Affiliation(s)
- Haiyang Yang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Jiacheng Wan
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xixia Yu
- Department of Internal Medicine, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Yinfeng Fang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
7
|
Cho JH, Jeong JH, Lee SW. NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:13279-13292. [PMID: 34748509 DOI: 10.1109/tcyb.2021.3122969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain-computer interfaces (BCIs) have been widely employed to identify and estimate a user's intention to trigger a robotic device by decoding motor imagery (MI) from an electroencephalogram (EEG). However, developing a BCI system driven by MI related to natural hand-grasp tasks is challenging due to its high complexity. Although numerous BCI studies have successfully decoded large body parts, such as the movement intention of both hands, arms, or legs, research on MI decoding of high-level behaviors such as hand grasping is essential to further expand the versatility of MI-based BCIs. In this study, we propose NeuroGrasp, a dual-stage deep learning framework that decodes multiple hand grasping from EEG signals under the MI paradigm. The proposed method effectively uses an EEG and electromyography (EMG)-based learning, such that EEG-based inference at test phase becomes possible. The EMG guidance during model training allows BCIs to predict hand grasp types from EEG signals accurately. Consequently, NeuroGrasp improved classification performance offline, and demonstrated a stable classification performance online. Across 12 subjects, we obtained an average offline classification accuracy of 0.68 (±0.09) in four-grasp-type classifications and 0.86 (±0.04) in two-grasp category classifications. In addition, we obtained an average online classification accuracy of 0.65 (±0.09) and 0.79 (±0.09) across six high-performance subjects. Because the proposed method has demonstrated a stable classification performance when evaluated either online or offline, in the future, we expect that the proposed method could contribute to different BCI applications, including robotic hands or neuroprosthetics for handling everyday objects.
Collapse
|
8
|
de Seta V, Toppi J, Colamarino E, Molle R, Castellani F, Cincotti F, Mattia D, Pichiorri F. Cortico-muscular coupling to control a hybrid brain-computer interface for upper limb motor rehabilitation: A pseudo-online study on stroke patients. Front Hum Neurosci 2022; 16:1016862. [PMID: 36483633 PMCID: PMC9722732 DOI: 10.3389/fnhum.2022.1016862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/26/2022] [Indexed: 10/05/2023] Open
Abstract
Brain-Computer Interface (BCI) systems for motor rehabilitation after stroke have proven their efficacy to enhance upper limb motor recovery by reinforcing motor related brain activity. Hybrid BCIs (h-BCIs) exploit both central and peripheral activation and are frequently used in assistive BCIs to improve classification performances. However, in a rehabilitative context, brain and muscular features should be extracted to promote a favorable motor outcome, reinforcing not only the volitional control in the central motor system, but also the effective projection of motor commands to target muscles, i.e., central-to-peripheral communication. For this reason, we considered cortico-muscular coupling (CMC) as a feature for a h-BCI devoted to post-stroke upper limb motor rehabilitation. In this study, we performed a pseudo-online analysis on 13 healthy participants (CTRL) and 12 stroke patients (EXP) during executed (CTRL, EXP unaffected arm) and attempted (EXP affected arm) hand grasping and extension to optimize the translation of CMC computation and CMC-based movement detection from offline to online. Results showed that updating the CMC computation every 125 ms (shift of the sliding window) and accumulating two predictions before a final classification decision were the best trade-off between accuracy and speed in movement classification, independently from the movement type. The pseudo-online analysis on stroke participants revealed that both attempted and executed grasping/extension can be classified through a CMC-based movement detection with high performances in terms of classification speed (mean delay between movement detection and EMG onset around 580 ms) and accuracy (hit rate around 85%). The results obtained by means of this analysis will ground the design of a novel non-invasive h-BCI in which the control feature is derived from a combined EEG and EMG connectivity pattern estimated during upper limb movement attempts.
Collapse
Affiliation(s)
- Valeria de Seta
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy
- Neuroelectric Imaging and BCI Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy
- Neuroelectric Imaging and BCI Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emma Colamarino
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy
- Neuroelectric Imaging and BCI Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Rita Molle
- Neuroelectric Imaging and BCI Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Filippo Castellani
- Neuroelectric Imaging and BCI Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Febo Cincotti
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy
- Neuroelectric Imaging and BCI Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Donatella Mattia
- Neuroelectric Imaging and BCI Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Floriana Pichiorri
- Neuroelectric Imaging and BCI Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
9
|
Sun X, Sun X, Wang Q, Wang X, Feng L, Yang Y, Jing Y, Yang C, Zhang S. Biosensors toward behavior detection in diagnosis of alzheimer’s disease. Front Bioeng Biotechnol 2022; 10:1031833. [PMID: 36338126 PMCID: PMC9626796 DOI: 10.3389/fbioe.2022.1031833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, a huge number of individuals all over the world, elderly people, in particular, have been suffering from Alzheimer’s disease (AD), which has had a significant negative impact on their quality of life. To intervene early in the progression of the disease, accurate, convenient, and low-cost detection technologies are gaining increased attention. As a result of their multiple merits in the detection and assessment of AD, biosensors are being frequently utilized in this field. Behavioral detection is a prospective way to diagnose AD at an early stage, which is a more objective and quantitative approach than conventional neuropsychological scales. Furthermore, it provides a safer and more comfortable environment than those invasive methods (such as blood and cerebrospinal fluid tests) and is more economical than neuroimaging tests. Behavior detection is gaining increasing attention in AD diagnosis. In this review, cutting-edge biosensor-based devices for AD diagnosis together with their measurement parameters and diagnostic effectiveness have been discussed in four application subtopics: body movement behavior detection, eye movement behavior detection, speech behavior detection, and multi-behavior detection. Finally, the characteristics of behavior detection sensors in various application scenarios are summarized and the prospects of their application in AD diagnostics are presented as well.
Collapse
Affiliation(s)
- Xiaotong Sun
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo, China
- *Correspondence: Sheng Zhang, ; Xu Sun,
| | - Qingfeng Wang
- Nottingham University Business School China, University of Nottingham Ningbo China, Ningbo, Zhejiang, China
| | - Xiang Wang
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Luying Feng
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
| | - Yifan Yang
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Ying Jing
- Business School, NingboTech University, Ningbo, China
| | - Canjun Yang
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
| | - Sheng Zhang
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
- *Correspondence: Sheng Zhang, ; Xu Sun,
| |
Collapse
|
10
|
Vecchiato G, Del Vecchio M, Ambeck-Madsen J, Ascari L, Avanzini P. EEG-EMG coupling as a hybrid method for steering detection in car driving settings. Cogn Neurodyn 2022; 16:987-1002. [PMID: 36237409 PMCID: PMC9508316 DOI: 10.1007/s11571-021-09776-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022] Open
Abstract
Understanding mental processes in complex human behavior is a key issue in driving, representing a milestone for developing user-centered assistive driving devices. Here, we propose a hybrid method based on electroencephalographic (EEG) and electromyographic (EMG) signatures to distinguish left and right steering in driving scenarios. Twenty-four participants took part in the experiment consisting of recordings of 128-channel EEG and EMG activity from deltoids and forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm modulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-synchronization resulting from the non-ecological task to detect the steering side using cross-correlation analysis with the ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-correlation patterns discriminate the steering side earlier relative to the single EMG signal. This hybrid system overcomes the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy, and adaptability, thus adding to the EMG the characteristic predictive power of the cerebral data. These results prove how it is possible to complement different physiological signals to control the level of assistance needed by the driver. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09776-w.
Collapse
Affiliation(s)
- Giovanni Vecchiato
- Institute of Neuroscience, National Research Council of Italy, Via Volturno 39/E, 43125 Parma, Italy
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Via Volturno 39/E, 43125 Parma, Italy
| | | | - Luca Ascari
- Camlin Italy S.R.L., Parma, Italy
- Henesis s.r.l., 43123 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Via Volturno 39/E, 43125 Parma, Italy
| |
Collapse
|
11
|
Ye F, Ding J, Chen K, Xi X. Investigation of Corticomuscular Functional Coupling during Hand Movements Using Vine Copula. Brain Sci 2022; 12:754. [PMID: 35741639 PMCID: PMC9221488 DOI: 10.3390/brainsci12060754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Corticomuscular functional coupling reflects the neuronal communication between cortical oscillations and muscle activity. Although the motor cortex is significantly involved in complex motor tasks, there is still no detailed understanding of the cortical contribution during such tasks. In this paper, we first propose a vine copula model to describe corticomuscular functional coupling and we construct the brain muscle function network. First, we recorded surface electromyography (sEMG) and electroencephalography (EEG) signals corresponding to the hand open, hand close, wrist flexion, and wrist extension motions of 12 participants during the initial experiments. The pre-processed signals were translated into the marginal density functions of different channels through the generalized autoregressive conditional heteroscedasticity model. Subsequently, we calculated the Kendall rank correlation coefficient, and used the R-vine model to decompose the multi-dimensional marginal density function into two-dimensional copula coefficient to determine the structure of the R-vine. Finally, we used the normalized adjacency matrix to structure the corticomuscular network for each hand motion considered. Based on the adjacency matrix, we found that the Kendall rank correlation coefficient between EEG and EMG was low. Moreover, a significant difference was observed in the correlation between the C3 and EMG signals for the different hand-motion activities. We also observed two core nodes in the networks corresponding to the four activities when the vine copula model was applied. Moreover, there was a large difference in the connections of the network models corresponding to the different hand-motion activities. Therefore, we believe that our approach is sufficiently accurate in identifying and classifying motor tasks.
Collapse
Affiliation(s)
- Fei Ye
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - JinSuo Ding
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Kai Chen
- Hangzhou Mingzhou Naokang Rehabilitation Hospital, Hangzhou 311215, China;
| | - Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
12
|
Sarasola-Sanz A, López-Larraz E, Irastorza-Landa N, Rossi G, Figueiredo T, McIntyre J, Ramos-Murguialday A. Real-Time Control of a Multi-Degree-of-Freedom Mirror Myoelectric Interface During Functional Task Training. Front Neurosci 2022; 16:764936. [PMID: 35360179 PMCID: PMC8962619 DOI: 10.3389/fnins.2022.764936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/07/2022] [Indexed: 12/03/2022] Open
Abstract
Motor learning mediated by motor training has in the past been explored for rehabilitation. Myoelectric interfaces together with exoskeletons allow patients to receive real-time feedback about their muscle activity. However, the number of degrees of freedom that can be simultaneously controlled is limited, which hinders the training of functional tasks and the effectiveness of the rehabilitation therapy. The objective of this study was to develop a myoelectric interface that would allow multi-degree-of-freedom control of an exoskeleton involving arm, wrist and hand joints, with an eye toward rehabilitation. We tested the effectiveness of a myoelectric decoder trained with data from one upper limb and mirrored to control a multi-degree-of-freedom exoskeleton with the opposite upper limb (i.e., mirror myoelectric interface) in 10 healthy participants. We demonstrated successful simultaneous control of multiple upper-limb joints by all participants. We showed evidence that subjects learned the mirror myoelectric model within the span of a five-session experiment, as reflected by a significant decrease in the time to execute trials and in the number of failed trials. These results are the necessary precursor to evaluating if a decoder trained with EMG from the healthy limb could foster learning of natural EMG patterns and lead to motor rehabilitation in stroke patients.
Collapse
Affiliation(s)
- Andrea Sarasola-Sanz
- Neurotechnology Unit, TECNALIA, Basque Research and Technology Alliance, Donostia-San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- *Correspondence: Andrea Sarasola-Sanz,
| | - Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain Technologies, Zaragoza, Spain
| | - Nerea Irastorza-Landa
- Neurotechnology Unit, TECNALIA, Basque Research and Technology Alliance, Donostia-San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Giulia Rossi
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Thiago Figueiredo
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Joseph McIntyre
- Neurotechnology Unit, TECNALIA, Basque Research and Technology Alliance, Donostia-San Sebastian, Spain
| | - Ander Ramos-Murguialday
- Neurotechnology Unit, TECNALIA, Basque Research and Technology Alliance, Donostia-San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Guerrero-Mendez CD, Ruiz-Olaya AF. Coherence-based connectivity analysis of EEG and EMG signals during reach-to-grasp movement involving two weights. BRAIN-COMPUTER INTERFACES 2022. [DOI: 10.1080/2326263x.2022.2029308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cristian D. Guerrero-Mendez
- Bioengineering Research Group, Faculty of Mechanical, Electronic and Biomedical Engineering, Antonio Nariño University, Bogotá, Colombia
| | - Andres F. Ruiz-Olaya
- Bioengineering Research Group, Faculty of Mechanical, Electronic and Biomedical Engineering, Antonio Nariño University, Bogotá, Colombia
| |
Collapse
|
14
|
Dillen A, Steckelmacher D, Efthymiadis K, Langlois K, De Beir A, Marušič U, Vanderborght B, Nowé A, Meeusen R, Ghaffari F, Romain O, De Pauw K. Deep learning for biosignal control: insights from basic to real-time methods with recommendations. J Neural Eng 2022; 19. [PMID: 35086076 DOI: 10.1088/1741-2552/ac4f9a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Biosignal control is an interaction modality that allows users to interact with electronic devices by decoding the biological signals emanating from the movements or thoughts of the user. This manner of interaction with devices can enhance the sense of agency for users and enable persons suffering from a paralyzing condition to interact with everyday devices that would otherwise be challenging for them to use. It can also improve control of prosthetic devices and exoskeletons by making the interaction feel more natural and intuitive. However, with the current state of the art, several issues still need to be addressed to reliably decode user intent from biosignals and provide an improved user experience over other interaction modalities. One solution is to leverage advances in Deep Learning (DL) methods to provide more reliable decoding at the expense of added computational complexity. This scoping review introduces the basic concepts of DL and assists readers in deploying DL methods to a real-time control system that should operate under real-world conditions. The scope of this review covers any electronic device, but with an emphasis on robotic devices, as this is the most active area of research in biosignal control. We review the literature pertaining to the implementation and evaluation of control systems that incorporate DL to identify the main gaps and issues in the field, and formulate suggestions on how to mitigate them. Additionally, we formulate guidelines on the best approach to designing, implementing and evaluating research prototypes that use DL in their biosignal control systems.
Collapse
Affiliation(s)
- Arnau Dillen
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | | | | | - Kevin Langlois
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | - Albert De Beir
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | - Uroš Marušič
- Alma Mater Europaea - Evropski Center Maribor, Slovenska ulica 17, Maribor, Maribor, 2000, SLOVENIA
| | - Bram Vanderborght
- Vrije Universiteit Brussel, Faculty of Applied Sciences, Brussel, Brussel, 1050, BELGIUM
| | - Ann Nowé
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | - Romain Meeusen
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | - Fakhreddine Ghaffari
- Equipe Traitement de l'Information et Systèmes, CY Cergy Paris University, 6 Rue du Ponceau, Cergy-Pontoise, 95000 , FRANCE
| | - Olivier Romain
- Equipe Traitement de l'Information et Systèmes, CY Cergy Paris University, 6 Rue du Ponceau, Cergy-Pontoise, 95000 , FRANCE
| | - Kevin De Pauw
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| |
Collapse
|
15
|
Capotorti E, Trigili E, McKinney Z, Peperoni E, Dell'Agnello F, Fantozzi M, Baldoni A, Marconi D, Taglione E, Crea S, Vitiello N. A Novel Torque-Controlled Hand Exoskeleton to Decode Hand Movements Combining Semg and Fingers Kinematics: A Feasibility Study. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2021.3111412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Tryon J, Trejos AL. Evaluating Convolutional Neural Networks as a Method of EEG-EMG Fusion. Front Neurorobot 2021; 15:692183. [PMID: 34887739 PMCID: PMC8649783 DOI: 10.3389/fnbot.2021.692183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Wearable robotic exoskeletons have emerged as an exciting new treatment tool for disorders affecting mobility; however, the human–machine interface, used by the patient for device control, requires further improvement before robotic assistance and rehabilitation can be widely adopted. One method, made possible through advancements in machine learning technology, is the use of bioelectrical signals, such as electroencephalography (EEG) and electromyography (EMG), to classify the user's actions and intentions. While classification using these signals has been demonstrated for many relevant control tasks, such as motion intention detection and gesture recognition, challenges in decoding the bioelectrical signals have caused researchers to seek methods for improving the accuracy of these models. One such method is the use of EEG–EMG fusion, creating a classification model that decodes information from both EEG and EMG signals simultaneously to increase the amount of available information. So far, EEG–EMG fusion has been implemented using traditional machine learning methods that rely on manual feature extraction; however, new machine learning methods have emerged that can automatically extract relevant information from a dataset, which may prove beneficial during EEG–EMG fusion. In this study, Convolutional Neural Network (CNN) models were developed using combined EEG–EMG inputs to determine if they have potential as a method of EEG–EMG fusion that automatically extracts relevant information from both signals simultaneously. EEG and EMG signals were recorded during elbow flexion–extension and used to develop CNN models based on time–frequency (spectrogram) and time (filtered signal) domain image inputs. The results show a mean accuracy of 80.51 ± 8.07% for a three-class output (33.33% chance level), with an F-score of 80.74%, using time–frequency domain-based models. This work demonstrates the viability of CNNs as a new method of EEG–EMG fusion and evaluates different signal representations to determine the best implementation of a combined EEG–EMG CNN. It leverages modern machine learning methods to advance EEG–EMG fusion, which will ultimately lead to improvements in the usability of wearable robotic exoskeletons.
Collapse
Affiliation(s)
- Jacob Tryon
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Ana Luisa Trejos
- School of Biomedical Engineering, Western University, London, ON, Canada.,Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| |
Collapse
|
17
|
Jamil N, Belkacem AN, Ouhbi S, Lakas A. Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain-Computer Interfaces: A Systematic Literature Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:4754. [PMID: 34300492 PMCID: PMC8309653 DOI: 10.3390/s21144754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Humans interact with computers through various devices. Such interactions may not require any physical movement, thus aiding people with severe motor disabilities in communicating with external devices. The brain-computer interface (BCI) has turned into a field involving new elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to help BCI investigator and investors to decide which devices to select or which studies to support based on the current market examination. This examination of noninvasive EEG devices is based on published BCI studies in different research areas. In this SLR, the research area of noninvasive BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited to studies focusing on applications and devices of the BCI technology. The data used herein were selected using IC and exclusion criteria to ensure quality assessment. The selected articles were divided into four main research areas: education, engineering, entertainment, and medicine. Overall, 238 papers were selected based on IC. Moreover, 28 companies were identified that developed wired and wireless equipment as means of BCI assistive technology. The findings of this review indicate that the implications of using BCIs for assistive, adaptive, and rehabilitative technologies are encouraging for people with severe motor disabilities and healthy people. With an increasing number of healthy people using BCIs, other research areas, such as the motivation of players when participating in games or the security of soldiers when observing certain areas, can be studied and collaborated using the BCI technology. However, such BCI systems must be simple (wearable), convenient (sensor fabrics and self-adjusting abilities), and inexpensive.
Collapse
Affiliation(s)
- Nuraini Jamil
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.J.); (S.O.)
| | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Sofia Ouhbi
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.J.); (S.O.)
| | - Abderrahmane Lakas
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
18
|
Tortora S, Tonin L, Chisari C, Micera S, Menegatti E, Artoni F. Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers. Front Neurorobot 2020; 14:582728. [PMID: 33281593 PMCID: PMC7705173 DOI: 10.3389/fnbot.2020.582728] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
Despite the advances in the field of brain computer interfaces (BCI), the use of the sole electroencephalography (EEG) signal to control walking rehabilitation devices is currently not viable in clinical settings, due to its unreliability. Hybrid interfaces (hHMIs) represent a very recent solution to enhance the performance of single-signal approaches. These are classification approaches that combine multiple human-machine interfaces, normally including at least one BCI with other biosignals, such as the electromyography (EMG). However, their use for the decoding of gait activity is still limited. In this work, we propose and evaluate a hybrid human-machine interface (hHMI) to decode walking phases of both legs from the Bayesian fusion of EEG and EMG signals. The proposed hHMI significantly outperforms its single-signal counterparts, by providing high and stable performance even when the reliability of the muscular activity is compromised temporarily (e.g., fatigue) or permanently (e.g., weakness). Indeed, the hybrid approach shows a smooth degradation of classification performance after temporary EMG alteration, with more than 75% of accuracy at 30% of EMG amplitude, with respect to the EMG classifier whose performance decreases below 60% of accuracy. Moreover, the fusion of EEG and EMG information helps keeping a stable recognition rate of each gait phase of more than 80% independently on the permanent level of EMG degradation. From our study and findings from the literature, we suggest that the use of hybrid interfaces may be the key to enhance the usability of technologies restoring or assisting the locomotion on a wider population of patients in clinical applications and outside the laboratory environment.
Collapse
Affiliation(s)
- Stefano Tortora
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Luca Tonin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and AI Scuola Superiore Sant'Anna, The Biorobotics Institute, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland
| | - Emanuele Menegatti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Fiorenzo Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.,Functional Brain Mapping Laboratory, Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Yin G, Zhang X, Chen D, Li H, Chen J, Chen C, Lemos S. Processing Surface EMG Signals for Exoskeleton Motion Control. Front Neurorobot 2020; 14:40. [PMID: 32765250 PMCID: PMC7381241 DOI: 10.3389/fnbot.2020.00040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023] Open
Abstract
The surface electromyography (sEMG) signal has been used for volitional control of robotic assistive devices. There are still challenges in improving system performance accuracy and signal processing to remove systematic noise. This study presents procedures and a pilot validation of the EMG-driven speed-control of exoskeleton and integrated treadmill with a goal to provide better interaction between a user and the system. The gait cycle duration (GCD) was extracted from sEMG signals using the autocorrelation algorithm and Bayesian fusion algorithm. GCDs of various walking speeds were then programmed to control the motion speed of exoskeleton robotic system. The performance and efficiency of this sEMG-controlled robotic assistive ambulation system was tested and validated among 6 healthy volunteers. The results demonstrated that the autocorrelation algorithm extracted the GCD from individual muscle contraction. The GCDs of individual muscles had variability between different walking steps under a designated walking speed. Bayesian fusion algorithms processed the GCDs of multiple muscles yielding a final GCD with the least variance. The fused GCD effectively controlled the motion speeds of exoskeleton and treadmill. The higher amplitude of EMG signals with shorter GCD was found during a faster walking speed. The algorithms using fused GCDs and gait stride length yielded trajectory joint motion tracks in a shape of sine curve waveform. The joint angles of the exoskeleton measured by a decoder mounted on the hip turned out to be in sine waveforms. The hip joint motion track of the exoskeleton matched the angles projected by trajectory curve generated by computer algorithms based on the fused GCDs with high agreement. The EMG-driven speed-control provided the human-machine inter-limb coordination mechanisms for an intuitive speed control of the exoskeleton-treadmill system at the user's intents. Potentially the whole system can be used for gait rehabilitation of incomplete spinal cord hemispheric stroke patients as goal-directed and task-oriented training tool.
Collapse
Affiliation(s)
- Gui Yin
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Zhang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xi’an, China
| | - Dawei Chen
- Robotic Rehabilitation Laboratory, Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Hanzhe Li
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xi’an, China
| | | | - Chaoyang Chen
- Robotic Rehabilitation Laboratory, Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery and Sport Medicine, Detroit Medical Center, Detroit, MI, United States
| | - Stephen Lemos
- Department of Orthopaedic Surgery and Sport Medicine, Detroit Medical Center, Detroit, MI, United States
| |
Collapse
|
20
|
Spüler M, López-Larraz E, Ramos-Murguialday A. On the design of EEG-based movement decoders for completely paralyzed stroke patients. J Neuroeng Rehabil 2018; 15:110. [PMID: 30458838 PMCID: PMC6247630 DOI: 10.1186/s12984-018-0438-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/17/2018] [Indexed: 11/24/2022] Open
Abstract
Background Brain machine interface (BMI) technology has demonstrated its efficacy for rehabilitation of paralyzed chronic stroke patients. The critical component in BMI-training consists of the associative connection (contingency) between the intention and the feedback provided. However, the relationship between the BMI design and its performance in stroke patients is still an open question. Methods In this study we compare different methodologies to design a BMI for rehabilitation and evaluate their effects on movement intention decoding performance. We analyze the data of 37 chronic stroke patients who underwent 4 weeks of BMI intervention with different types of association between their brain activity and the proprioceptive feedback. We simulate the pseudo-online performance that a BMI would have under different conditions, varying: (1) the cortical source of activity (i.e., ipsilesional, contralesional, bihemispheric), (2) the type of spatial filter applied, (3) the EEG frequency band, (4) the type of classifier; and also evaluated the use of residual EMG activity to decode the movement intentions. Results We observed a significant influence of the different BMI designs on the obtained performances. Our results revealed that using bihemispheric beta activity with a common average reference and an adaptive support vector machine led to the best classification results. Furthermore, the decoding results based on brain activity were significantly higher than those based on muscle activity. Conclusions This paper underscores the relevance of the different parameters used to decode movement, using EEG in severely paralyzed stroke patients. We demonstrated significant differences in performance for the different designs, which supports further research that should elucidate if those approaches leading to higher accuracies also induce higher motor recovery in paralyzed stroke patients.
Collapse
Affiliation(s)
- Martin Spüler
- Department of Computer Engineering, Wilhelm-Schickard-Institute, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany. .,TECNALIA, Health Technologies, Neural Enginering Laboratory, Mikeletegi Pasalekua 1, 20009, San Sebastian, Spain.
| |
Collapse
|