1
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
2
|
Tamilselvam YK, Jog M, Patel RV. Robot-assisted investigation of sensorimotor control in Parkinson's disease. Sci Rep 2023; 13:4751. [PMID: 36959273 PMCID: PMC10036530 DOI: 10.1038/s41598-023-31299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Sensorimotor control (SMC) is a complex function that involves sensory, cognitive, and motor systems working together to plan, update and execute voluntary movements. Any abnormality in these systems could lead to deficits in SMC, which would negatively impact an individual's ability to execute goal-directed motions. Recent studies have shown that patients diagnosed with Parkinson's disease (PD) have dysfunctions in sensory, motor, and cognitive systems, which could give rise to SMC deficits. However, SMC deficits in PD and how they affect a patient's upper-limb movements have not been well understood. The objective of the study was to investigate SMC deficits in PD and how they affect the planning and correction of upper-limb motions. This was accomplished using a robotic manipulandum equipped with a virtual-reality system. Twenty age-matched healthy controls and fifty-six PD patients (before and after medication) completed an obstacle avoidance task under dynamic conditions (target and obstacles in moving or stationary form, with and without mechanical perturbations). Kinematic information from the robot was used to extract eighteen features that evaluated the SMC functions of the participants. The findings show that the PD patients before medication were 32% slower, reached 16% fewer targets, hit 41% more obstacles, and were 26% less efficient than the control participants, and the difference in these features was statistically significant under dynamic conditions. In addition to the motor deficits, the PD patients also showed deficits in handling high cognitive loads and interpreting sensory cues. Further, the PD patients after medication exhibited worse sensory and cognitive performance than before medication under complex testing conditions. The PD patients also showed deficits in following the computational models leading to poor motor planning.
Collapse
Affiliation(s)
- Yokhesh K Tamilselvam
- Canadian Surgical Technologies and Advanced Robotics (CSTAR), University of Western Ontario (UWO), London, ON, N6A 5B9, Canada.
- Department of Electrical and Computer Engineering, University of Western Ontario (UWO), London, ON, N6A 5B9, Canada.
| | - Mandar Jog
- Department of Electrical and Computer Engineering, University of Western Ontario (UWO), London, ON, N6A 5B9, Canada
- Department of Clinical Neurological Sciences, UWO, and the London Movement Disorders Centre, London, ON, Canada
| | - Rajni V Patel
- Canadian Surgical Technologies and Advanced Robotics (CSTAR), University of Western Ontario (UWO), London, ON, N6A 5B9, Canada
- Department of Electrical and Computer Engineering, University of Western Ontario (UWO), London, ON, N6A 5B9, Canada
- Department of Clinical Neurological Sciences, UWO, London, ON, Canada
- Department of Surgery, UWO, London, ON, Canada
| |
Collapse
|
3
|
Hanna-Pladdy B, Pahwa R, Lyons KE. Dopaminergic Basis of Spatial Deficits in Early Parkinson's Disease. Cereb Cortex Commun 2021; 2:tgab042. [PMID: 34738086 DOI: 10.1093/texcom/tgab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/14/2022] Open
Abstract
Dopaminergic mechanisms regulating cognitive and motor control were evaluated comparing visuoperceptual and perceptuomotor functions in Parkinson's disease (PD). The performance of PD patients (n = 40) was contrasted with healthy controls (n = 42) across two separate visits (on and off dopaminergic medications) on computerized tasks of perception and aiming to a target at variable stimulus lengths (4, 8, 12 cm). Novel visuoperceptual tasks of length equivalence and width interval estimations without motor demands were compared with tasks estimating spatial deviation in movement termination. The findings support the presence of spatial deficits in early PD, more pronounced with increased discrimination difficulty, and with shorter stimulus lengths of 4 cm for both visuoperceptual and perceptumotor functions. Dopaminergic medication had an adverse impact on visuoperceptual accuracy in particular for length equivalence estimations, in contrast with dopaminergic modulation of perceptuomotor functions that reduced angular displacements toward the target. The differential outcomes for spatial accuracy in perception versus movement termination in PD are consistent with involvement of the direct pathway and models of progressive loss of dopamine through corticostriatal loops. Future research should develop validated and sensitive standardized tests of perception and explore dopaminergic selective deficits in PD to optimize medication titration for motor and cognitive symptoms of the disease.
Collapse
Affiliation(s)
- B Hanna-Pladdy
- Center for Advanced Imaging Research (CAIR), Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - R Pahwa
- Parkinson's Disease and Movement Disorder Center, Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - K E Lyons
- Parkinson's Disease and Movement Disorder Center, Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|