1
|
Krenzer A, Banck M, Makowski K, Hekalo A, Fitting D, Troya J, Sudarevic B, Zoller WG, Hann A, Puppe F. A Real-Time Polyp-Detection System with Clinical Application in Colonoscopy Using Deep Convolutional Neural Networks. J Imaging 2023; 9:jimaging9020026. [PMID: 36826945 PMCID: PMC9967208 DOI: 10.3390/jimaging9020026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is with a colonoscopy. During this procedure, the gastroenterologist searches for polyps. However, there is a potential risk of polyps being missed by the gastroenterologist. Automated detection of polyps helps to assist the gastroenterologist during a colonoscopy. There are already publications examining the problem of polyp detection in the literature. Nevertheless, most of these systems are only used in the research context and are not implemented for clinical application. Therefore, we introduce the first fully open-source automated polyp-detection system scoring best on current benchmark data and implementing it ready for clinical application. To create the polyp-detection system (ENDOMIND-Advanced), we combined our own collected data from different hospitals and practices in Germany with open-source datasets to create a dataset with over 500,000 annotated images. ENDOMIND-Advanced leverages a post-processing technique based on video detection to work in real-time with a stream of images. It is integrated into a prototype ready for application in clinical interventions. We achieve better performance compared to the best system in the literature and score a F1-score of 90.24% on the open-source CVC-VideoClinicDB benchmark.
Collapse
Affiliation(s)
- Adrian Krenzer
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Michael Banck
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Kevin Makowski
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Amar Hekalo
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Daniel Fitting
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Boban Sudarevic
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Department of Internal Medicine and Gastroenterology, Katharinenhospital, Kriegsbergstrasse 60, 70174 Stuttgart, Germany
| | - Wolfgang G Zoller
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Department of Internal Medicine and Gastroenterology, Katharinenhospital, Kriegsbergstrasse 60, 70174 Stuttgart, Germany
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Frank Puppe
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| |
Collapse
|
2
|
Hsu CM, Hsu CC, Hsu ZM, Chen TH, Kuo T. Intraprocedure Artificial Intelligence Alert System for Colonoscopy Examination. SENSORS (BASEL, SWITZERLAND) 2023; 23:1211. [PMID: 36772251 PMCID: PMC9921893 DOI: 10.3390/s23031211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Colonoscopy is a valuable tool for preventing and reducing the incidence and mortality of colorectal cancer. Although several computer-aided colorectal polyp detection and diagnosis systems have been proposed for clinical application, many remain susceptible to interference problems, including low image clarity, unevenness, and low accuracy for the analysis of dynamic images; these drawbacks affect the robustness and practicality of these systems. This study proposed an intraprocedure alert system for colonoscopy examination developed on the basis of deep learning. The proposed system features blurred image detection, foreign body detection, and polyp detection modules facilitated by convolutional neural networks. The training and validation datasets included high-quality images and low-quality images, including blurred images and those containing folds, fecal matter, and opaque water. For the detection of blurred images and images containing folds, fecal matter, and opaque water, the accuracy rate was 96.2%. Furthermore, the study results indicated a per-polyp detection accuracy of 100% when the system was applied to video images. The recall rates for high-quality image frames and polyp image frames were 95.7% and 92%, respectively. The overall alert accuracy rate and the false-positive rate of low quality for video images obtained through per-frame analysis were 95.3% and 0.18%, respectively. The proposed system can be used to alert colonoscopists to the need to slow their procedural speed or to perform flush or lumen inflation in cases where the colonoscope is being moved too rapidly, where fecal residue is present in the intestinal tract, or where the colon has been inadequately distended.
Collapse
Affiliation(s)
- Chen-Ming Hsu
- Department of Gastroenterology and Hepatology, Taoyuan Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Chang Hsu
- Department of Computer Science and Information Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Zhe-Ming Hsu
- Department of Computer Science and Information Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Tsung-Hsing Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tony Kuo
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Feng B, Xu C, An Z. AI recognition preprocessing algorithm for polyp based on illumination equalization and highlight restoration. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2022. [DOI: 10.1007/s41060-022-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Adjei PE, Lonseko ZM, Du W, Zhang H, Rao N. Examining the effect of synthetic data augmentation in polyp detection and segmentation. Int J Comput Assist Radiol Surg 2022; 17:1289-1302. [PMID: 35678960 DOI: 10.1007/s11548-022-02651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE As with several medical image analysis tasks based on deep learning, gastrointestinal image analysis is plagued with data scarcity, privacy concerns and an insufficient number of pathology samples. This study examines the generation and utility of synthetic samples of colonoscopy images with polyps for data augmentation. METHODS We modify and train a pix2pix model to generate synthetic colonoscopy samples with polyps to augment the original dataset. Subsequently, we create a variety of datasets by varying the quantity of synthetic samples and traditional augmentation samples, to train a U-Net network and Faster R-CNN model for segmentation and detection of polyps, respectively. We compare the performance of the models when trained with the resulting datasets in terms of F1 score, intersection over union, precision and recall. Further, we compare the performances of the models with unseen polyp datasets to assess their generalization ability. RESULTS The average F1 coefficient and intersection over union are improved with increasing number of synthetic samples in U-Net over all test datasets. The performance of the Faster R-CNN model is also improved in terms of polyp detection, while decreasing the false-negative rate. Further, the experimental results for polyp detection outperform similar studies in the literature on the ETIS-PolypLaribDB dataset. CONCLUSION By varying the quantity of synthetic and traditional augmentation, there is the potential to control the sensitivity of deep learning models in polyp segmentation and detection. Further, GAN-based augmentation is a viable option for improving the performance of models for polyp segmentation and detection.
Collapse
Affiliation(s)
- Prince Ebenezer Adjei
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Department of Computer Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Zenebe Markos Lonseko
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wenju Du
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Han Zhang
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Nini Rao
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
5
|
Nogueira-Rodríguez A, Reboiro-Jato M, Glez-Peña D, López-Fernández H. Performance of Convolutional Neural Networks for Polyp Localization on Public Colonoscopy Image Datasets. Diagnostics (Basel) 2022; 12:898. [PMID: 35453946 PMCID: PMC9027927 DOI: 10.3390/diagnostics12040898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer is one of the most frequent malignancies. Colonoscopy is the de facto standard for precancerous lesion detection in the colon, i.e., polyps, during screening studies or after facultative recommendation. In recent years, artificial intelligence, and especially deep learning techniques such as convolutional neural networks, have been applied to polyp detection and localization in order to develop real-time CADe systems. However, the performance of machine learning models is very sensitive to changes in the nature of the testing instances, especially when trying to reproduce results for totally different datasets to those used for model development, i.e., inter-dataset testing. Here, we report the results of testing of our previously published polyp detection model using ten public colonoscopy image datasets and analyze them in the context of the results of other 20 state-of-the-art publications using the same datasets. The F1-score of our recently published model was 0.88 when evaluated on a private test partition, i.e., intra-dataset testing, but it decayed, on average, by 13.65% when tested on ten public datasets. In the published research, the average intra-dataset F1-score is 0.91, and we observed that it also decays in the inter-dataset setting to an average F1-score of 0.83.
Collapse
Affiliation(s)
- Alba Nogueira-Rodríguez
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (A.N.-R.); (M.R.-J.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (A.N.-R.); (M.R.-J.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Daniel Glez-Peña
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (A.N.-R.); (M.R.-J.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (A.N.-R.); (M.R.-J.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| |
Collapse
|
6
|
Nogueira-Rodríguez A, Domínguez-Carbajales R, Campos-Tato F, Herrero J, Puga M, Remedios D, Rivas L, Sánchez E, Iglesias Á, Cubiella J, Fdez-Riverola F, López-Fernández H, Reboiro-Jato M, Glez-Peña D. Real-time polyp detection model using convolutional neural networks. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06496-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractColorectal cancer is a major health problem, where advances towards computer-aided diagnosis (CAD) systems to assist the endoscopist can be a promising path to improvement. Here, a deep learning model for real-time polyp detection based on a pre-trained YOLOv3 (You Only Look Once) architecture and complemented with a post-processing step based on an object-tracking algorithm to reduce false positives is reported. The base YOLOv3 network was fine-tuned using a dataset composed of 28,576 images labelled with locations of 941 polyps that will be made public soon. In a frame-based evaluation using isolated images containing polyps, a general F1 score of 0.88 was achieved (recall = 0.87, precision = 0.89), with lower predictive performance in flat polyps, but higher for sessile, and pedunculated morphologies, as well as with the usage of narrow band imaging, whereas polyp size < 5 mm does not seem to have significant impact. In a polyp-based evaluation using polyp and normal mucosa videos, with a positive criterion defined as the presence of at least one 50-frames-length (window size) segment with a ratio of 75% of frames with predicted bounding boxes (frames positivity), 72.61% of sensitivity (95% CI 68.99–75.95) and 83.04% of specificity (95% CI 76.70–87.92) were achieved (Youden = 0.55, diagnostic odds ratio (DOR) = 12.98). When the positive criterion is less stringent (window size = 25, frames positivity = 50%), sensitivity reaches around 90% (sensitivity = 89.91%, 95% CI 87.20–91.94; specificity = 54.97%, 95% CI 47.49–62.24; Youden = 0.45; DOR = 10.76). The object-tracking algorithm has demonstrated a significant improvement in specificity whereas maintaining sensitivity, as well as a marginal impact on computational performance. These results suggest that the model could be effectively integrated into a CAD system.
Collapse
|
7
|
Hsu CM, Hsu CC, Hsu ZM, Shih FY, Chang ML, Chen TH. Colorectal Polyp Image Detection and Classification through Grayscale Images and Deep Learning. SENSORS 2021; 21:s21185995. [PMID: 34577209 PMCID: PMC8470682 DOI: 10.3390/s21185995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
Colonoscopy screening and colonoscopic polypectomy can decrease the incidence and mortality rate of colorectal cancer (CRC). The adenoma detection rate and accuracy of diagnosis of colorectal polyp which vary in different experienced endoscopists have impact on the colonoscopy protection effect of CRC. The work proposed a colorectal polyp image detection and classification system through grayscale images and deep learning. The system collected the data of CVC-Clinic and 1000 colorectal polyp images of Linkou Chang Gung Medical Hospital. The red-green-blue (RGB) images were transformed to 0 to 255 grayscale images. Polyp detection and classification were performed by convolutional neural network (CNN) model. Data for polyp detection was divided into five groups and tested by 5-fold validation. The accuracy of polyp detection was 95.1% for grayscale images which is higher than 94.1% for RGB and narrow-band images. The diagnostic accuracy, precision and recall rates were 82.8%, 82.5% and 95.2% for narrow-band images, respectively. The experimental results show that grayscale images achieve an equivalent or even higher accuracy of polyp detection than RGB images for lightweight computation. It is also found that the accuracy of polyp detection and classification is dramatically decrease when the size of polyp images small than 1600 pixels. It is recommended that clinicians could adjust the distance between the lens and polyps appropriately to enhance the system performance when conducting computer-assisted colorectal polyp analysis.
Collapse
Affiliation(s)
- Chen-Ming Hsu
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan; (C.-M.H.); (T.-H.C.)
| | - Chien-Chang Hsu
- Department of Computer Science and Information Engineering, Fu-Jen Catholic University, 510 Chung Cheng Rd., Hsinchuang Dist., New Taipei City 242, Taiwan; (Z.-M.H.); (F.-Y.S.)
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, 510 Chung Cheng Rd., Hsinchuang Dist., New Taipei City 242, Taiwan;
- Correspondence:
| | - Zhe-Ming Hsu
- Department of Computer Science and Information Engineering, Fu-Jen Catholic University, 510 Chung Cheng Rd., Hsinchuang Dist., New Taipei City 242, Taiwan; (Z.-M.H.); (F.-Y.S.)
| | - Feng-Yu Shih
- Department of Computer Science and Information Engineering, Fu-Jen Catholic University, 510 Chung Cheng Rd., Hsinchuang Dist., New Taipei City 242, Taiwan; (Z.-M.H.); (F.-Y.S.)
| | - Meng-Lin Chang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, 510 Chung Cheng Rd., Hsinchuang Dist., New Taipei City 242, Taiwan;
| | - Tsung-Hsing Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan; (C.-M.H.); (T.-H.C.)
| |
Collapse
|
8
|
Zhou J, Hu N, Huang ZY, Song B, Wu CC, Zeng FX, Wu M. Application of artificial intelligence in gastrointestinal disease: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1188. [PMID: 34430629 PMCID: PMC8350704 DOI: 10.21037/atm-21-3001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
Objective We collected evidence on the application of artificial intelligence (AI) in gastroenterology field. The review was carried out from two aspects of endoscopic types and gastrointestinal diseases, and briefly summarized the challenges and future directions in this field. Background Due to the advancement of computational power and a surge of available data, a solid foundation has been laid for the growth of AI. Specifically, varied machine learning (ML) techniques have been emerging in endoscopic image analysis. To improve the accuracy and efficiency of clinicians, AI has been widely applied to gastrointestinal endoscopy. Methods PubMed electronic database was searched using the keywords containing “AI”, “ML”, “deep learning (DL)”, “convolution neural network”, “endoscopy (such as white light endoscopy (WLE), narrow band imaging (NBI) endoscopy, magnifying endoscopy with narrow band imaging (ME-NBI), chromoendoscopy, endocytoscopy (EC), and capsule endoscopy (CE))”. Search results were assessed for relevance and then used for detailed discussion. Conclusions This review described the basic knowledge of AI, ML, and DL, and summarizes the application of AI in various endoscopes and gastrointestinal diseases. Finally, the challenges and directions of AI in clinical application were discussed. At present, the application of AI has solved some clinical problems, but more still needs to be done.
Collapse
Affiliation(s)
- Jun Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Na Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Cheng Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan-Xin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
9
|
Automatic Polyp Segmentation in Colonoscopy Images Using a Modified Deep Convolutional Encoder-Decoder Architecture. SENSORS 2021; 21:s21165630. [PMID: 34451072 PMCID: PMC8402594 DOI: 10.3390/s21165630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
Colorectal cancer has become the third most commonly diagnosed form of cancer, and has the second highest fatality rate of cancers worldwide. Currently, optical colonoscopy is the preferred tool of choice for the diagnosis of polyps and to avert colorectal cancer. Colon screening is time-consuming and highly operator dependent. In view of this, a computer-aided diagnosis (CAD) method needs to be developed for the automatic segmentation of polyps in colonoscopy images. This paper proposes a modified SegNet Visual Geometry Group-19 (VGG-19), a form of convolutional neural network, as a CAD method for polyp segmentation. The modifications include skip connections, 5 × 5 convolutional filters, and the concatenation of four dilated convolutions applied in parallel form. The CVC-ClinicDB, CVC-ColonDB, and ETIS-LaribPolypDB databases were used to evaluate the model, and it was found that our proposed polyp segmentation model achieved an accuracy, sensitivity, specificity, precision, mean intersection over union, and dice coefficient of 96.06%, 94.55%, 97.56%, 97.48%, 92.3%, and 95.99%, respectively. These results indicate that our model performs as well as or better than previous schemes in the literature. We believe that this study will offer benefits in terms of the future development of CAD tools for polyp segmentation for colorectal cancer diagnosis and management. In the future, we intend to embed our proposed network into a medical capsule robot for practical usage and try it in a hospital setting with clinicians.
Collapse
|
10
|
Joseph J, LePage EM, Cheney CP, Pawa R. Artificial intelligence in colonoscopy. World J Gastroenterol 2021; 27:4802-4817. [PMID: 34447227 PMCID: PMC8371500 DOI: 10.3748/wjg.v27.i29.4802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/12/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer remains a leading cause of morbidity and mortality in the United States. Advances in artificial intelligence (AI), specifically computer aided detection and computer-aided diagnosis offer promising methods of increasing adenoma detection rates with the goal of removing more pre-cancerous polyps. Conversely, these methods also may allow for smaller non-cancerous lesions to be diagnosed in vivo and left in place, decreasing the risks that come with unnecessary polypectomies. This review will provide an overview of current advances in the use of AI in colonoscopy to aid in polyp detection and characterization as well as areas of developing research.
Collapse
Affiliation(s)
- Joel Joseph
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, United States
| | - Ella Marie LePage
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, United States
| | - Catherine Phillips Cheney
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157, United States
| | - Rishi Pawa
- Department of Internal Medicine, Section of Gastroenterology and Hepatology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States
| |
Collapse
|
11
|
Cao B, Zhang KC, Wei B, Chen L. Status quo and future prospects of artificial neural network from the perspective of gastroenterologists. World J Gastroenterol 2021; 27:2681-2709. [PMID: 34135549 PMCID: PMC8173384 DOI: 10.3748/wjg.v27.i21.2681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial neural networks (ANNs) are one of the primary types of artificial intelligence and have been rapidly developed and used in many fields. In recent years, there has been a sharp increase in research concerning ANNs in gastrointestinal (GI) diseases. This state-of-the-art technique exhibits excellent performance in diagnosis, prognostic prediction, and treatment. Competitions between ANNs and GI experts suggest that efficiency and accuracy might be compatible in virtue of technique advancements. However, the shortcomings of ANNs are not negligible and may induce alterations in many aspects of medical practice. In this review, we introduce basic knowledge about ANNs and summarize the current achievements of ANNs in GI diseases from the perspective of gastroenterologists. Existing limitations and future directions are also proposed to optimize ANN’s clinical potential. In consideration of barriers to interdisciplinary knowledge, sophisticated concepts are discussed using plain words and metaphors to make this review more easily understood by medical practitioners and the general public.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ke-Cheng Zhang
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Cao C, Wang R, Yu Y, zhang H, Yu Y, Sun C. Gastric polyp detection in gastroscopic images using deep neural network. PLoS One 2021; 16:e0250632. [PMID: 33909671 PMCID: PMC8081222 DOI: 10.1371/journal.pone.0250632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
This paper presents the research results of detecting gastric polyps with deep learning object detection method in gastroscopic images. Gastric polyps have various sizes. The difficulty of polyp detection is that small polyps are difficult to detect from the background. We propose a feature extraction and fusion module and combine it with the YOLOv3 network to form our network. This method performs better than other methods in the detection of small polyps because it can fuse the semantic information of high-level feature maps with low-level feature maps to help small polyps detection. In this work, we use a dataset of gastric polyps created by ourselves, containing 1433 training images and 508 validation images. We train and validate our network on our dataset. In comparison with other methods of polyps detection, our method has a significant improvement in precision, recall rate, F1, and F2 score. The precision, recall rate, F1 score, and F2 score of our method can achieve 91.6%, 86.2%, 88.8%, and 87.2%.
Collapse
Affiliation(s)
- Chanting Cao
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ruilin Wang
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yao Yu
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
- * E-mail:
| | - Hui zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ying Yu
- Beijing An Zhen Hospital, Beijing, China
| | - Changyin Sun
- School of Automation, Southeast University, Nanjing, China
| |
Collapse
|
13
|
|
14
|
de Almeida Thomaz V, Sierra-Franco CA, Raposo AB. Training data enhancements for improving colonic polyp detection using deep convolutional neural networks. Artif Intell Med 2020; 111:101988. [PMID: 33461694 DOI: 10.1016/j.artmed.2020.101988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/04/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Over the last years, the most relevant results in the context of polyp detection were achieved through deep learning techniques. However, the most common obstacles in this field are the small datasets with a reduced number of samples and the lack of data variability. This paper describes a method to reduce this limitation and improve polyp detection results using publicly available colonoscopic datasets. METHODS To address this issue, we increased the number and variety of images from the original dataset. Our method consists on adding polyps to the dataset images. The developed algorithm performs a rigorous selection of the best region within the image to receive the polyp. This procedure preserves the realistic features of the images while creating more diverse samples for training purposes. Our method allows copying existing polyps to new non-polypoid target regions. We also develop a strategy to generate new and more varied polyps through generative adversarial neural networks. Hence, the developed approach enriches the training data, creating automatically new samples with their appropriate labels. RESULTS We applied the proposed data enhancement over a colonic polyp dataset. Thus, we can assess the effectiveness of our approach through a Faster R-CNN detection model. Performance results show improvements over the polyp detections while reducing the false-negative rate. The experimental results also show better recall metrics in comparison with both the original training set and other studies in the literature. CONCLUSION We demonstrate that our proposed method has the potential to increase the data variability and number of samples in a reduced polyp dataset, improving the polyp detection rate and recall values. These results open new possibilities for advancing the study and implementation of new methods to improve computer-assisted medical image analysis.
Collapse
Affiliation(s)
- Victor de Almeida Thomaz
- Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea Rio de Janeiro, Brazil.
| | - Cesar A Sierra-Franco
- Tecgraf Institute of Technical-Scientific Software Development, Rua Marquês de São Vicente, 225, Gávea Rio de Janeiro, Brazil.
| | - Alberto B Raposo
- Tecgraf Institute of Technical-Scientific Software Development, Rua Marquês de São Vicente, 225, Gávea Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Sánchez-Peralta LF, Bote-Curiel L, Picón A, Sánchez-Margallo FM, Pagador JB. Deep learning to find colorectal polyps in colonoscopy: A systematic literature review. Artif Intell Med 2020; 108:101923. [PMID: 32972656 DOI: 10.1016/j.artmed.2020.101923] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/03/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer has a great incidence rate worldwide, but its early detection significantly increases the survival rate. Colonoscopy is the gold standard procedure for diagnosis and removal of colorectal lesions with potential to evolve into cancer and computer-aided detection systems can help gastroenterologists to increase the adenoma detection rate, one of the main indicators for colonoscopy quality and predictor for colorectal cancer prevention. The recent success of deep learning approaches in computer vision has also reached this field and has boosted the number of proposed methods for polyp detection, localization and segmentation. Through a systematic search, 35 works have been retrieved. The current systematic review provides an analysis of these methods, stating advantages and disadvantages for the different categories used; comments seven publicly available datasets of colonoscopy images; analyses the metrics used for reporting and identifies future challenges and recommendations. Convolutional neural networks are the most used architecture together with an important presence of data augmentation strategies, mainly based on image transformations and the use of patches. End-to-end methods are preferred over hybrid methods, with a rising tendency. As for detection and localization tasks, the most used metric for reporting is the recall, while Intersection over Union is highly used in segmentation. One of the major concerns is the difficulty for a fair comparison and reproducibility of methods. Even despite the organization of challenges, there is still a need for a common validation framework based on a large, annotated and publicly available database, which also includes the most convenient metrics to report results. Finally, it is also important to highlight that efforts should be focused in the future on proving the clinical value of the deep learning based methods, by increasing the adenoma detection rate.
Collapse
Affiliation(s)
| | - Luis Bote-Curiel
- Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, km 41.8, 10071 Cáceres, Spain.
| | - Artzai Picón
- Tecnalia, Parque Científico y Tecnológico de Bizkaia, C/ Astondo bidea, Edificio 700, 48160 Derio, Spain.
| | | | - J Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, km 41.8, 10071 Cáceres, Spain.
| |
Collapse
|
16
|
Choi J, Shin K, Jung J, Bae HJ, Kim DH, Byeon JS, Kim N. Convolutional Neural Network Technology in Endoscopic Imaging: Artificial Intelligence for Endoscopy. Clin Endosc 2020; 53:117-126. [PMID: 32252504 PMCID: PMC7137563 DOI: 10.5946/ce.2020.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, significant improvements have been made in artificial intelligence. The artificial neural network was introduced in the 1950s. However, because of the low computing power and insufficient datasets available at that time, artificial neural networks suffered from overfitting and vanishing gradient problems for training deep networks. This concept has become more promising owing to the enhanced big data processing capability, improvement in computing power with parallel processing units, and new algorithms for deep neural networks, which are becoming increasingly successful and attracting interest in many domains, including computer vision, speech recognition, and natural language processing. Recent studies in this technology augur well for medical and healthcare applications, especially in endoscopic imaging. This paper provides perspectives on the history, development, applications, and challenges of deep-learning technology.
Collapse
Affiliation(s)
- Joonmyeong Choi
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Keewon Shin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Do Hoon Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Namku Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
- Department of Radiology, Asan Medical Center, Seoul, Korea
| |
Collapse
|
17
|
Jia X, Xing X, Yuan Y, Xing L, Meng MQH. Wireless Capsule Endoscopy: A New Tool for Cancer Screening in the Colon With Deep-Learning-Based Polyp Recognition. PROCEEDINGS OF THE IEEE 2020; 108:178-197. [DOI: 10.1109/jproc.2019.2950506] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|