1
|
Chen J, Fan X, Ge R, Xiao J, Wang R, Ma W, Li Y. Towards interpretable sleep stage classification with a multi-stream fusion network. BMC Med Inform Decis Mak 2025; 25:164. [PMID: 40229774 PMCID: PMC11998347 DOI: 10.1186/s12911-025-02995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Sleep stage classification is a significant measure in assessing sleep quality and diagnosing sleep disorders. Many researchers have investigated automatic sleep stage classification methods and achieved promising results. However, these methods ignored the heterogeneous information fusion of the spatial-temporal and spectral-temporal features among multiple-channel sleep monitoring signals. In this study, we propose an interpretable multi-stream fusion network, named MSF-SleepNet, for sleep stage classification. Specifically, we employ Chebyshev graph convolution and temporal convolution to obtain the spatial-temporal features from body-topological information of sleep monitoring signals. Meanwhile, we utilize a short time Fourier transform and gated recurrent unit to learn the spectral-temporal features from sleep monitoring signals. After fusing the spatial-temporal and spectral-temporal features, we use a contrastive learning scheme to enhance the differences in feature patterns of sleep monitoring signals across various sleep stages. Finally, LIME is employed to improve the interpretability of MSF-SleepNet. Experimental results on ISRUC-S1 and ISRUC-S3 datasets show that MSF-SleepNet achieves competitive results and is superior to its state-of-the-art counterparts on most of performance metrics.
Collapse
Affiliation(s)
- Jingrui Chen
- Department of Information Management, Guangdong Justice Police Vocational College, Guangzhou, Guangdong, 510520, China
| | - Xiaomao Fan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518055, China.
| | - Ruiquan Ge
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Jing Xiao
- School of Computer Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Ruxin Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Wenjun Ma
- School of Computer Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| | - Ye Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Yazdi M, Samaee M, Massicotte D. A Review on Automated Sleep Study. Ann Biomed Eng 2024; 52:1463-1491. [PMID: 38493234 DOI: 10.1007/s10439-024-03486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
In recent years, research on automated sleep analysis has witnessed significant growth, reflecting advancements in understanding sleep patterns and their impact on overall health. This review synthesizes findings from an exhaustive analysis of 87 papers, systematically retrieved from prominent databases such as Google Scholar, PubMed, IEEE Xplore, and ScienceDirect. The selection criteria prioritized studies focusing on methods employed, signal modalities utilized, and machine learning algorithms applied in automated sleep analysis. The overarching goal was to critically evaluate the strengths and weaknesses of the proposed methods, shedding light on the current landscape and future directions in sleep research. An in-depth exploration of the reviewed literature revealed a diverse range of methodologies and machine learning approaches employed in automated sleep studies. Notably, K-Nearest Neighbors (KNN), Ensemble Learning Methods, and Support Vector Machine (SVM) emerged as versatile and potent classifiers, exhibiting high accuracies in various applications. However, challenges such as performance variability and computational demands were observed, necessitating judicious classifier selection based on dataset intricacies. In addition, the integration of traditional feature extraction methods with deep structures and the combination of different deep neural networks were identified as promising strategies to enhance diagnostic accuracy in sleep-related studies. The reviewed literature emphasized the need for adaptive classifiers, cross-modality integration, and collaborative efforts to drive the field toward more accurate, robust, and accessible sleep-related diagnostic solutions. This comprehensive review serves as a solid foundation for researchers and practitioners, providing an organized synthesis of the current state of knowledge in automated sleep analysis. By highlighting the strengths and challenges of various methodologies, this review aims to guide future research toward more effective and nuanced approaches to sleep diagnostics.
Collapse
Affiliation(s)
- Mehran Yazdi
- Laboratory of Signal and System Integration, Department of Electrical and Computer Engineering, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.
- Signal and Image Processing Laboratory, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
| | - Mahdi Samaee
- Signal and Image Processing Laboratory, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Daniel Massicotte
- Laboratory of Signal and System Integration, Department of Electrical and Computer Engineering, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
3
|
Gu Y, Gagnon JF, Kaminska M. Sleep electroencephalography biomarkers of cognition in obstructive sleep apnea. J Sleep Res 2023; 32:e13831. [PMID: 36941194 DOI: 10.1111/jsr.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/23/2023]
Abstract
Obstructive sleep apnea has been associated with cognitive impairment and may be linked to disorders of cognitive function. These associations may be a result of intermittent hypoxaemia, sleep fragmentation and changes in sleep microstructure in obstructive sleep apnea. Current clinical metrics of obstructive sleep apnea, such as the apnea-hypopnea index, are poor predictors of cognitive outcomes in obstructive sleep apnea. Sleep microstructure features, which can be identified on sleep electroencephalography of traditional overnight polysomnography, are increasingly being characterized in obstructive sleep apnea and may better predict cognitive outcomes. Here, we summarize the literature on several major sleep electroencephalography features (slow-wave activity, sleep spindles, K-complexes, cyclic alternating patterns, rapid eye movement sleep quantitative electroencephalography, odds ratio product) identified in obstructive sleep apnea. We will review the associations between these sleep electroencephalography features and cognition in obstructive sleep apnea, and examine how treatment of obstructive sleep apnea affects these associations. Lastly, evolving technologies in sleep electroencephalography analyses will also be discussed (e.g. high-density electroencephalography, machine learning) as potential predictors of cognitive function in obstructive sleep apnea.
Collapse
Affiliation(s)
- Yusing Gu
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean-François Gagnon
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Marta Kaminska
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
- Respiratory Division & Sleep Laboratory, McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
4
|
A comprehensive evaluation of contemporary methods used for automatic sleep staging. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Automatic sleep stage classification with reduced epoch of EEG. EVOLUTIONARY INTELLIGENCE 2021. [DOI: 10.1007/s12065-021-00632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Lim DC, Mazzotti DR, Sutherland K, Mindel JW, Kim J, Cistulli PA, Magalang UJ, Pack AI, de Chazal P, Penzel T. Reinventing polysomnography in the age of precision medicine. Sleep Med Rev 2020; 52:101313. [PMID: 32289733 PMCID: PMC7351609 DOI: 10.1016/j.smrv.2020.101313] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
For almost 50 years, sleep laboratories around the world have been collecting massive amounts of polysomnographic (PSG) physiological data to diagnose sleep disorders, the majority of which are not utilized in the clinical setting. Only a small fraction of the information available within these signals is utilized to generate indices. For example, the apnea-hypopnea index (AHI) remains the primary tool for diagnostic and therapeutic decision-making for obstructive sleep apnea (OSA) despite repeated studies showing it to be inadequate in predicting clinical consequences. Today, there are many novel approaches to PSG signals, making it possible to extract more complex metrics and analyses that are potentially more clinically relevant for individual patients. However, the pathway to implement novel PSG metrics/analyses into routine clinical practice is unclear. Our goal with this review is to highlight some of the novel PSG metrics/analyses that are becoming available. We suggest that stronger academic-industry relationships would facilitate the development of state-of-the-art clinical research to establish the value of novel PSG metrics/analyses in clinical sleep medicine. Collectively, as a sleep community, it is time to reinvent how we utilize the polysomnography to move us towards Precision Sleep Medicine.
Collapse
Affiliation(s)
- Diane C Lim
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania, United States.
| | - Diego R Mazzotti
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania, United States
| | - Kate Sutherland
- Charles Perkins Centre and Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Department Respiratory and Sleep Medicine, Royal North Shore Hospital, Australia
| | - Jesse W Mindel
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Wexner Medical Center, United States
| | - Jinyoung Kim
- University of Pennsylvania School of Nursing, Philadelphia, PA, United States
| | - Peter A Cistulli
- Charles Perkins Centre and Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Department Respiratory and Sleep Medicine, Royal North Shore Hospital, Australia
| | - Ulysses J Magalang
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Wexner Medical Center, United States
| | - Allan I Pack
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania, United States
| | - Philip de Chazal
- Charles Perkins Centre and School of Electrical and Information Engineering, Faculty of Engineering, University of Sydney, Australia
| | - Thomas Penzel
- Center for Sleep Medicine, Charite Universitätsmedizin, Berlin, Germany; Saratov State University, Saratov, Russia
| |
Collapse
|
7
|
Cesari M, Christensen JAE, Sixel-Doring F, Muntean ML, Mollenhauer B, Trenkwalder C, Jennum P, Sorensen HBD. A Clinically Applicable Interactive Micro and Macro-Sleep Staging Algorithm for Elderly and Patients with Neurodegeneration. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3649-3652. [PMID: 31946667 DOI: 10.1109/embc.2019.8856705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elderly and patients with neurodegenerative diseases (NDD) often complain about sleep problems and show altered sleep structure. Automated algorithms for efficient and specific sleep staging are needed. We propose a new algorithm using only one electroencephalographic and two electrooculographic channels to score wakefulness, rapid eye movement (REM) sleep and non-REM sleep in a cohort of elderly healthy controls (HC), patients with Parkinson's disease (PD), isolated REM sleep behavior disorder (iRBD), considered the prodromal stage of PD, and patients with PD and RBD (PD+RBD). The proposed method scores both standard 30-s epochs (macro-staging) and 5-s mini-epochs (micro-staging), whose evaluation may help to better understand sleep micro-structure. Moreover, the algorithm is interactive, as it labels the classified sleep epochs as either certain or uncertain, so that experts can manually review the uncertain ones. The algorithm performances were evaluated for macro-sleep staging, where it achieved overall accuracies of 0.87±0.05 in 41 HC, 0.86±0.10 in 57 PD, 0.76±0.10 in 31 iRBD and 0.77±0.10 in 30 PD+RBD patients when all 30-s epochs were considered. The accuracies increased to 0.91±0.05, 0.90±0.08, 0.85±0.09, 0.88±0.08 respectively when considering only the certain ones. The epochs labeled as uncertain were 9.95±4.15%, 11.13±7.86%, 18.39±7.38% and 18.90±8.00% in HC, PD, iRBD and PD+RBD respectively. The proposed interactive micro and macro sleep staging algorithm can be used in clinics to reduce the burden of manual sleep staging in elderly and patients with NDD.
Collapse
|