1
|
Franken-CT: Head and Neck MR-Based Pseudo-CT Synthesis Using Diverse Anatomical Overlapping MR-CT Scans. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Typically, pseudo-Computerized Tomography (CT) synthesis schemes proposed in the literature rely on complete atlases acquired with the same field of view (FOV) as the input volume. However, clinical CTs are usually acquired in a reduced FOV to decrease patient ionization. In this work, we present the Franken-CT approach, showing how the use of a non-parametric atlas composed of diverse anatomical overlapping Magnetic Resonance (MR)-CT scans and deep learning methods based on the U-net architecture enable synthesizing extended head and neck pseudo-CTs. Visual inspection of the results shows the high quality of the pseudo-CT and the robustness of the method, which is able to capture the details of the bone contours despite synthesizing the resulting image from knowledge obtained from images acquired with a completely different FOV. The experimental Zero-Normalized Cross-Correlation (ZNCC) reports 0.9367 ± 0.0138 (mean ± SD) and 95% confidence interval (0.9221, 0.9512); the experimental Mean Absolute Error (MAE) reports 73.9149 ± 9.2101 HU and 95% confidence interval (66.3383, 81.4915); the Structural Similarity Index Measure (SSIM) reports 0.9943 ± 0.0009 and 95% confidence interval (0.9935, 0.9951); and the experimental Dice coefficient for bone tissue reports 0.7051 ± 0.1126 and 95% confidence interval (0.6125, 0.7977). The voxel-by-voxel correlation plot shows an excellent correlation between pseudo-CT and ground-truth CT Hounsfield Units (m = 0.87; adjusted R2 = 0.91; p < 0.001). The Bland–Altman plot shows that the average of the differences is low (−38.6471 ± 199.6100; 95% CI (−429.8827, 352.5884)). This work serves as a proof of concept to demonstrate the great potential of deep learning methods for pseudo-CT synthesis and their great potential using real clinical datasets.
Collapse
|
2
|
Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, Yang X. Machine learning in quantitative PET: A review of attenuation correction and low-count image reconstruction methods. Phys Med 2020; 76:294-306. [PMID: 32738777 PMCID: PMC7484241 DOI: 10.1016/j.ejmp.2020.07.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
The rapid expansion of machine learning is offering a new wave of opportunities for nuclear medicine. This paper reviews applications of machine learning for the study of attenuation correction (AC) and low-count image reconstruction in quantitative positron emission tomography (PET). Specifically, we present the developments of machine learning methodology, ranging from random forest and dictionary learning to the latest convolutional neural network-based architectures. For application in PET attenuation correction, two general strategies are reviewed: 1) generating synthetic CT from MR or non-AC PET for the purposes of PET AC, and 2) direct conversion from non-AC PET to AC PET. For low-count PET reconstruction, recent deep learning-based studies and the potential advantages over conventional machine learning-based methods are presented and discussed. In each application, the proposed methods, study designs and performance of published studies are listed and compared with a brief discussion. Finally, the overall contributions and remaining challenges are summarized.
Collapse
Affiliation(s)
- Tonghe Wang
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yang Lei
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Yabo Fu
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Walter J Curran
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tian Liu
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Leu SC, Huang Z, Lin Z. Generation of Pseudo-CT using High-Degree Polynomial Regression on Dual-Contrast Pelvic MRI Data. Sci Rep 2020; 10:8118. [PMID: 32415138 PMCID: PMC7229007 DOI: 10.1038/s41598-020-64842-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/20/2020] [Indexed: 01/06/2023] Open
Abstract
Increasing interests in using magnetic resonance imaging only in radiation therapy require methods for predicting the computed tomography numbers from MRI data. Here we propose a simple voxel method to generate the pseudo-CT (pCT) image using dual-contrast pelvic MRI data. The method is first trained with the CT data and dual-contrast MRI data (two sets of MRI with different sequences) of multiple patients, where the anatomical structures in the images after deformable image registration are segmented into several regions, and after MRI intensity normalizations a regression analysis is used to determine a two-variable polynomial function for each region to relate a voxel's two MRI intensity values to its CT number. We first evaluate the accuracy via the Hounsfield unit (HU) difference between the pseudo-CT and reference-CT (rCT) images and obtain the average mean absolute error as 40.3 ± 2.9 HU from leave-one-out-cross-validation (LOOCV) across all six patients, which is better than most previous results and comparable to another study using the more complicated atlas-based method. We also perform a dosimetric evaluation of the treatment plans based on pCT and rCT images and find the average passing rate within 2% dose difference to be 95.4% in point-to-point dose comparisons. Therefore, our method shows encouraging results in predicting the CT numbers. This polynomial method needs less computer storage than the interpolation method and can be readily extended to the case of more than two MRI sequences.
Collapse
Affiliation(s)
- Samuel C Leu
- Department of Physics, C-209 Howell Science Complex, East Carolina University, Greenville, NC, 27858, USA
| | - Zhibin Huang
- Department of Physics, C-209 Howell Science Complex, East Carolina University, Greenville, NC, 27858, USA
- Global Medical Consulting, LLC, Brentwood, TN, 37027, USA
| | - Ziwei Lin
- Department of Physics, C-209 Howell Science Complex, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
4
|
Zhu Y, Zhu X. MRI-Driven PET Image Optimization for Neurological Applications. Front Neurosci 2019; 13:782. [PMID: 31417346 PMCID: PMC6684790 DOI: 10.3389/fnins.2019.00782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are established imaging modalities for the study of neurological disorders, such as epilepsy, dementia, psychiatric disorders and so on. Since these two available modalities vary in imaging principle and physical performance, each technique has its own advantages and disadvantages over the other. To acquire the mutual complementary information and reinforce each other, there is a need for the fusion of PET and MRI. This combined dual-modality (either sequential or simultaneous) could generate preferable soft tissue contrast of brain tissue, flexible acquisition parameters, and minimized exposure to radiation. The most unique superiority of PET/MRI is mainly manifested in MRI-based improvement for the inherent limitations of PET, such as motion artifacts, partial volume effect (PVE) and invasive procedure in quantitative analysis. Head motion during scanning significantly deteriorates the effective resolution of PET image, especially for the dynamic scan with lengthy time. Hybrid PET/MRI device can offer motion correction (MC) for PET data through MRI information acquired simultaneously. Regarding the PVE associated with limited spatial resolution, the process and reconstruction of PET data can be further optimized by using acquired MRI either sequentially or simultaneously. The quantitative analysis of dynamic PET data mainly relies upon an invasive arterial blood sampling procedure to acquire arterial input function (AIF). An image-derived input function (IDIF) method without the need of arterial cannulization, can serve as a potential alternative estimation of AIF. Compared with using PET data only, combining anatomical or functional information from MRI for improving the accuracy in IDIF approach has been demonstrated. Yet, due to the interference and inherent disparity between the two modalities, these methods for optimizing PET image based on MRI still have many technical challenges. This review discussed upon the most recent progress, current challenges and future directions of MRI-driven PET data optimization for neurological applications, with either sequential or simultaneous acquisition approach.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Liu Y, Lei Y, Wang Y, Wang T, Ren L, Lin L, McDonald M, Curran WJ, Liu T, Zhou J, Yang X. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method. Phys Med Biol 2019; 64:145015. [PMID: 31146267 PMCID: PMC6635951 DOI: 10.1088/1361-6560/ab25bc] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Magnetic resonance imaging (MRI) has been widely used in combination with computed tomography (CT) radiation therapy because MRI improves the accuracy and reliability of target delineation due to its superior soft tissue contrast over CT. The MRI-only treatment process is currently an active field of research since it could eliminate systematic MR-CT co-registration errors, reduce medical cost, avoid diagnostic radiation exposure, and simplify clinical workflow. The purpose of this work is to validate the application of a deep learning-based method for abdominal synthetic CT (sCT) generation by image evaluation and dosimetric assessment in a commercial proton pencil beam treatment planning system (TPS). This study proposes to integrate dense block into a 3D cycle-consistent generative adversarial networks (cycle GAN) framework in an effort to effectively learn the nonlinear mapping between MRI and CT pairs. A cohort of 21 patients with co-registered CT and MR pairs were used to test the deep learning-based sCT image quality by leave-one-out cross validation. The CT image quality, dosimetric accuracy and the distal range fidelity were rigorously checked, using side-by-side comparison against the corresponding original CT images. The average mean absolute error (MAE) was 72.87 ± 18.16 HU. The relative differences of the statistics of the PTV dose volume histogram (DVH) metrics between sCT and CT were generally less than 1%. Mean 3D gamma analysis passing rate of 1 mm/1%, 2 mm/2%, 3 mm/3% criteria with 10% dose threshold were 90.76% ± 5.94%, 96.98% ± 2.93% and 99.37% ± 0.99%, respectively. The median, mean and standard deviation of absolute maximum range differences were 0.170 cm, 0.186 cm and 0.155 cm. The image similarity, dosimetric and distal range agreement between sCT and original CT suggests the feasibility of further development of an MRI-only workflow for liver proton radiotherapy.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Lei Ren
- Department of Radiation Oncology, Duke University, Durham, NC 27708
| | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Mark McDonald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
6
|
Yang X, Wang T, Lei Y, Higgins K, Liu T, Shim H, Curran WJ, Mao H, Nye JA. MRI-based attenuation correction for brain PET/MRI based on anatomic signature and machine learning. Phys Med Biol 2019; 64:025001. [PMID: 30524027 PMCID: PMC7773209 DOI: 10.1088/1361-6560/aaf5e0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deriving accurate attenuation maps for PET/MRI remains a challenging problem because MRI voxel intensities are not related to properties of photon attenuation and bone/air interfaces have similarly low signal. This work presents a learning-based method to derive patient-specific computed tomography (CT) maps from routine T1-weighted MRI in their native space for attenuation correction of brain PET. We developed a machine-learning-based method using a sequence of alternating random forests under the framework of an iterative refinement model. Anatomical feature selection is included in both training and predication stages to achieve optimal performance. To evaluate its accuracy, we retrospectively investigated 17 patients, each of which has been scanned by PET/CT and MR for brain. The PET images were corrected for attenuation on CT images as ground truth, as well as on pseudo CT (PCT) images generated from MR images. The PCT images showed mean average error of 66.1 ± 8.5 HU, average correlation coefficient of 0.974 ± 0.018 and average Dice similarity coefficient (DSC) larger than 0.85 for air, bone and soft tissue. The side-by-side image comparisons and joint histograms demonstrated very good agreement of PET images after correction by PCT and CT. The mean differences of voxel values in selected VOIs were less than 4%, the mean absolute difference of all active area is around 2.5%, and the mean linear correlation coefficient is 0.989 ± 0.017 between PET images corrected by CT and PCT. This work demonstrates a novel learning-based approach to automatically generate CT images from routine T1-weighted MR images based on a random forest regression with patch-based anatomical signatures to effectively capture the relationship between the CT and MR images. Reconstructed PET images using the PCT exhibit errors well below accepted test/retest reliability of PET/CT indicating high quantitative equivalence.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America
- Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tonghe Wang
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America
| | - Yang Lei
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America
| | - Kristin Higgins
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America
- Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tian Liu
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America
- Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States of America
- Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Walter J Curran
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America
- Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States of America
- Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States of America
| |
Collapse
|