1
|
Meyers EC, Gabrieli D, Tacca N, Wengerd L, Darrow M, Schlink BR, Baumgart I, Friedenberg DA. Decoding hand and wrist movement intention from chronic stroke survivors with hemiparesis using a user-friendly, wearable EMG-based neural interface. J Neuroeng Rehabil 2024; 21:7. [PMID: 38218901 PMCID: PMC10787968 DOI: 10.1186/s12984-023-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2023] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Seventy-five percent of stroke survivors, caregivers, and health care professionals (HCP) believe current therapy practices are insufficient, specifically calling out the upper extremity as an area where innovation is needed to develop highly usable prosthetics/orthotics for the stroke population. A promising method for controlling upper extremity technologies is to infer movement intention non-invasively from surface electromyography (EMG). However, existing technologies are often limited to research settings and struggle to meet user needs. APPROACH To address these limitations, we have developed the NeuroLife® EMG System, an investigational device which consists of a wearable forearm sleeve with 150 embedded electrodes and associated hardware and software to record and decode surface EMG. Here, we demonstrate accurate decoding of 12 functional hand, wrist, and forearm movements in chronic stroke survivors, including multiple types of grasps from participants with varying levels of impairment. We also collected usability data to assess how the system meets user needs to inform future design considerations. MAIN RESULTS Our decoding algorithm trained on historical- and within-session data produced an overall accuracy of 77.1 ± 5.6% across 12 movements and rest in stroke participants. For individuals with severe hand impairment, we demonstrate the ability to decode a subset of two fundamental movements and rest at 85.4 ± 6.4% accuracy. In online scenarios, two stroke survivors achieved 91.34 ± 1.53% across three movements and rest, highlighting the potential as a control mechanism for assistive technologies. Feedback from stroke survivors who tested the system indicates that the sleeve's design meets various user needs, including being comfortable, portable, and lightweight. The sleeve is in a form factor such that it can be used at home without an expert technician and can be worn for multiple hours without discomfort. SIGNIFICANCE The NeuroLife EMG System represents a platform technology to record and decode high-resolution EMG for the real-time control of assistive devices in a form factor designed to meet user needs. The NeuroLife EMG System is currently limited by U.S. federal law to investigational use.
Collapse
Affiliation(s)
- Eric C Meyers
- Medical Device Solutions, Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA.
| | - David Gabrieli
- Health Analytics, Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA
| | - Nick Tacca
- Medical Device Solutions, Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA
| | - Lauren Wengerd
- Medical Device Solutions, Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA
| | - Michael Darrow
- Medical Device Solutions, Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA
| | - Bryan R Schlink
- Medical Device Solutions, Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA
| | - Ian Baumgart
- Medical Device Solutions, Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA
| | - David A Friedenberg
- Health Analytics, Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA
| |
Collapse
|
2
|
Zhao K, Wen H, Zhang Z, Atzori M, Müller H, Xie Z, Scano A. Evaluation of Methods for the Extraction of Spatial Muscle Synergies. Front Neurosci 2022; 16:732156. [PMID: 35720729 PMCID: PMC9202610 DOI: 10.3389/fnins.2022.732156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Muscle synergies have been largely used in many application fields, including motor control studies, prosthesis control, movement classification, rehabilitation, and clinical studies. Due to the complexity of the motor control system, the full repertoire of the underlying synergies has been identified only for some classes of movements and scenarios. Several extraction methods have been used to extract muscle synergies. However, some of these methods may not effectively capture the nonlinear relationship between muscles and impose constraints on input signals or extracted synergies. Moreover, other approaches such as autoencoders (AEs), an unsupervised neural network, were recently introduced to study bioinspired control and movement classification. In this study, we evaluated the performance of five methods for the extraction of spatial muscle synergy, namely, principal component analysis (PCA), independent component analysis (ICA), factor analysis (FA), nonnegative matrix factorization (NMF), and AEs using simulated data and a publicly available database. To analyze the performance of the considered extraction methods with respect to several factors, we generated a comprehensive set of simulated data (ground truth), including spatial synergies and temporal coefficients. The signal-to-noise ratio (SNR) and the number of channels (NoC) varied when generating simulated data to evaluate their effects on ground truth reconstruction. This study also tested the efficacy of each synergy extraction method when coupled with standard classification methods, including K-nearest neighbors (KNN), linear discriminant analysis (LDA), support vector machines (SVM), and Random Forest (RF). The results showed that both SNR and NoC affected the outputs of the muscle synergy analysis. Although AEs showed better performance than FA in variance accounted for and PCA in synergy vector similarity and activation coefficient similarity, NMF and ICA outperformed the other three methods. Classification tasks showed that classification algorithms were sensitive to synergy extraction methods, while KNN and RF outperformed the other two methods for all extraction methods; in general, the classification accuracy of NMF and PCA was higher. Overall, the results suggest selecting suitable methods when performing muscle synergy-related analysis.
Collapse
Affiliation(s)
- Kunkun Zhao
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Haiying Wen
- School of Mechanical Engineering, Southeast University, Nanjing, China
- Engineering Research Center of New Light Sources Technology and Equipment, Ministry of Education, Nanjing, China
- *Correspondence: Zhisheng Zhang,
| | - Zhisheng Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, China
- *Correspondence: Zhisheng Zhang,
| | - Manfredo Atzori
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Henning Müller
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland
- Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Zhongqu Xie
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Alessandro Scano
- UOS STIIMA Lecco – Human-Centered, Smart and Safe, Living Environment, Italian National Research Council (CNR), Lecco, Italy
| |
Collapse
|
3
|
Bao T, Xie SQ, Yang P, Zhou P, Zhang ZQ. Towards Robust, Adaptive and Reliable Upper-limb Motion Estimation Using Machine Learning and Deep Learning--A Survey in Myoelectric Control. IEEE J Biomed Health Inform 2022; 26:3822-3835. [PMID: 35294368 DOI: 10.1109/jbhi.2022.3159792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To develop multi-functional human-machine interfaces that can help disabled people reconstruct lost functions of upper-limbs, machine learning (ML) and deep learning (DL) techniques have been widely implemented to decode human movement intentions from surface electromyography (sEMG) signals. However, due to the high complexity of upper-limb movements and the inherent non-stable characteristics of sEMG, the usability of ML/DL based control schemes is still greatly limited in practical scenarios. To this end, tremendous efforts have been made to improve model robustness, adaptation, and reliability. In this article, we provide a systematic review on recent achievements, mainly from three categories: multi-modal sensing fusion to gain additional information of the user, transfer learning (TL) methods to eliminate domain shift impacts on estimation models, and post-processing approaches to obtain more reliable outcomes. Special attention is given to fusion strategies, deep TL frameworks, and confidence estimation. \textcolor{red}{Research challenges and emerging opportunities, with respect to hardware development, public resources, and decoding strategies, are also analysed to provide perspectives for future developments.
Collapse
|
4
|
Kim H, Im CH. Influence of the Number of Channels and Classification Algorithm on the Performance Robustness to Electrode Shift in Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces. Front Neuroinform 2021; 15:750839. [PMID: 34744677 PMCID: PMC8569408 DOI: 10.3389/fninf.2021.750839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
There remains an active investigation on elevating the classification accuracy and information transfer rate of brain-computer interfaces based on steady-state visual evoked potential. However, it has often been ignored that the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can be affected through the minor displacement of the electrodes from their optimal locations in practical applications because of the mislocation of electrodes and/or concurrent use of electroencephalography (EEG) devices with external devices, such as virtual reality headsets. In this study, we evaluated the performance robustness of SSVEP-based BCIs with respect to the changes in electrode locations for various channel configurations and classification algorithms. Our experiments involved 21 participants, where EEG signals were recorded from the scalp electrodes densely attached to the occipital area of the participants. The classification accuracies for all the possible cases of electrode location shifts for various channel configurations (1–3 channels) were calculated using five training-free SSVEP classification algorithms, i.e., the canonical correlation analysis (CCA), extended CCA, filter bank CCA, multivariate synchronization index (MSI), and extended MSI (EMSI). Then, the performances of the BCIs were evaluated using two measures, i.e., the average classification accuracy (ACA) across the electrode shifts and robustness to the electrode shift (RES). Our results showed that the ACA increased with an increase in the number of channels regardless of the algorithm. However, the RES was enhanced with an increase in the number of channels only when MSI and EMSI were employed. While both ACA and RES values for the five algorithms were similar under the single-channel condition, both ACA and RES values for MSI and EMSI were higher than those of the other algorithms under the multichannel (i.e., two or three electrodes) conditions. In addition, EMSI outperformed MSI when comparing the ACA and RES values under the multichannel conditions. In conclusion, our results suggested that the use of multichannel configuration and employment of EMSI could make the performance of SSVEP-based BCIs more robust to the electrode shift from the optimal locations.
Collapse
Affiliation(s)
- Hodam Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.,Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.,Department of Electronic Engineering, Hanyang University, Seoul, South Korea.,Department of HY-KIST Bioconvergence, Hanyang University, Seoul, South Korea.,Department of Artificial Intelligence, Hanyang University, Seoul, South Korea
| |
Collapse
|
5
|
Abstract
The growing interest in wearable robots opens the challenge for developing intuitive and natural control strategies. Among several human–machine interaction approaches, myoelectric control consists of decoding the motor intention from muscular activity (or EMG signals) with the aim of driving prosthetic or assistive robotic devices accordingly, thus establishing an intimate human–machine connection. In this scenario, bio-inspired approaches, e.g., synergy-based controllers, are revealed to be the most robust. However, synergy-based myo-controllers already proposed in the literature consider muscle patterns that are computed considering only the total variance reconstruction rate of the EMG signals, without taking into account the performance of the controller in the task (or application) space. In this work, extending a previous study, the authors presented an autoencoder-based neural model able to extract muscles synergies for motion intention detection while optimizing the task performance in terms of force/moment reconstruction. The proposed neural topology has been validated with EMG signals acquired from the main upper limb muscles during planar isometric reaching tasks performed in a virtual environment while wearing an exoskeleton. The presented model has been compared with the non-negative matrix factorization algorithm (i.e., the most used approach in the literature) in terms of muscle synergy extraction quality, and with three techniques already presented in the literature in terms of goodness of shoulder and elbow predicted moments. The results of the experimental comparisons have showed that the proposed model outperforms the state-of-art synergy-based joint moment estimators at the expense of the quality of the EMG signals reconstruction. These findings demonstrate that a trade-off, between the capability of the extracted muscle synergies to better describe the EMG signals variability and the task performance in terms of force reconstruction, can be achieved. The results of this study might open new horizons on synergies extraction methodologies, optimized synergy-based myo-controllers and, perhaps, reveals useful hints about their origin.
Collapse
|
6
|
Xu Z, Shen L, Qian J, Zhang Z. Advanced Hand Gesture Prediction Robust to Electrode Shift with an Arbitrary Angle. SENSORS 2020; 20:s20041113. [PMID: 32085623 PMCID: PMC7070560 DOI: 10.3390/s20041113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
Recent advances in myoelectric controlled techniques have made the surface electromyogram (sEMG)-based sensing armband a promising candidate for acquiring bioelectric signals in a simple and convenient way. However, inevitable electrode shift as a non-negligible defect commonly causes a trained classifier requiring continuous recalibrations. In this study, a novel hand gesture prediction is firstly proposed; it is robust to electrode shift with arbitrary angle. Unlike real-time recognition which outputs target gestures only after the termination of hand motions, our proposed advanced prediction can provide the same results, even before the completion of signal collection. Moreover, by combining interpolated peak location and preset synchronous gesture, the developed simplified rapid electrode shift detection and correction at random rather than previous fixed angles are realized. Experimental results demonstrate that it is possible to achieve both electrode shift detection with high precision and gesture prediction with high accuracy. This study provides a new insight into electrode shift robustness which brings gesture prediction a step closer to practical applications.
Collapse
|