1
|
Jæger KH, Wall S, Tveito A. Computational prediction of drug response in short QT syndrome type 1 based on measurements of compound effect in stem cell-derived cardiomyocytes. PLoS Comput Biol 2021; 17:e1008089. [PMID: 33591962 PMCID: PMC7909705 DOI: 10.1371/journal.pcbi.1008089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/26/2021] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
Short QT (SQT) syndrome is a genetic cardiac disorder characterized by an abbreviated QT interval of the patient's electrocardiogram. The syndrome is associated with increased risk of arrhythmia and sudden cardiac death and can arise from a number of ion channel mutations. Cardiomyocytes derived from induced pluripotent stem cells generated from SQT patients (SQT hiPSC-CMs) provide promising platforms for testing pharmacological treatments directly in human cardiac cells exhibiting mutations specific for the syndrome. However, a difficulty is posed by the relative immaturity of hiPSC-CMs, with the possibility that drug effects observed in SQT hiPSC-CMs could be very different from the corresponding drug effect in vivo. In this paper, we apply a multistep computational procedure for translating measured drug effects from these cells to human QT response. This process first detects drug effects on individual ion channels based on measurements of SQT hiPSC-CMs and then uses these results to estimate the drug effects on ventricular action potentials and QT intervals of adult SQT patients. We find that the procedure is able to identify IC50 values in line with measured values for the four drugs quinidine, ivabradine, ajmaline and mexiletine. In addition, the predicted effect of quinidine on the adult QT interval is in good agreement with measured effects of quinidine for adult patients. Consequently, the computational procedure appears to be a useful tool for helping predicting adult drug responses from pure in vitro measurements of patient derived cell lines.
Collapse
MESH Headings
- Action Potentials/drug effects
- Adult
- Ajmaline/pharmacology
- Algorithms
- Anti-Arrhythmia Agents/pharmacology
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Cell Line
- Computational Biology
- Drug Evaluation, Preclinical/methods
- Drug Evaluation, Preclinical/statistics & numerical data
- ERG1 Potassium Channel/genetics
- Electrocardiography
- Heart Conduction System/abnormalities
- Heart Conduction System/physiopathology
- Heart Defects, Congenital/drug therapy
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Humans
- In Vitro Techniques
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/physiology
- Ivabradine/pharmacology
- Mexiletine/pharmacology
- Models, Cardiovascular
- Mutation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Quinidine/pharmacology
- Translational Research, Biomedical
Collapse
Affiliation(s)
| | | | - Aslak Tveito
- Simula Research Laboratory, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Wu CI, Postema PG, Arbelo E, Behr ER, Bezzina CR, Napolitano C, Robyns T, Probst V, Schulze-Bahr E, Remme CA, Wilde AAM. SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes. Heart Rhythm 2020; 17:1456-1462. [PMID: 32244059 PMCID: PMC7156157 DOI: 10.1016/j.hrthm.2020.03.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 01/08/2023]
Abstract
Ever since the first case was reported at the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated coronavirus disease 2019 (COVID-19) has become a serious threat to public health globally in short time. At this point in time, there is no proven effective therapy. The interactions with concomitant disease are largely unknown, and that may be particularly pertinent to inherited arrhythmia syndrome. An arrhythmogenic effect of COVID-19 can be expected, potentially contributing to disease outcome. This may be of importance for patients with an increased risk of cardiac arrhythmias, either secondary to acquired conditions or comorbidities or consequent to inherited syndromes. Management of patients with inherited arrhythmia syndromes such as long QT syndrome, Brugada syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia in the setting of the COVID-19 pandemic may prove particularly challenging. Depending on the inherited defect involved, these patients may be susceptible to proarrhythmic effects of COVID-19-related issues such as fever, stress, electrolyte disturbances, and use of antiviral drugs. Here, we describe the potential COVID-19-associated risks and therapeutic considerations for patients with distinct inherited arrhythmia syndromes and provide recommendations, pending local possibilities, for their monitoring and management during this pandemic.
Collapse
Affiliation(s)
- Cheng-I Wu
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Elijah R Behr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); Cardiology Clinical Academic Group, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Carlo Napolitano
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); Molecular Cardiology and Medicine Division, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Tomas Robyns
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Vincent Probst
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); l'Institut du thorax, Service de Cardiologie du CHU de Nantes, Hopital Nord, Nantes Cedex, France
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); Institute for Genetics of Heart Diseases (IfGH), Division of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart).
| |
Collapse
|
3
|
Li Y, Wang K, Li Q, Luo C, Zhang H. Role of I f Density on Electrical Action Potential of Bio-engineered Cardiac Pacemaker: A Simulation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3995-3998. [PMID: 31946747 DOI: 10.1109/embc.2019.8856350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Due to the inevitable drawbacks of the implantable electrical pacemaker, the biological pacemaker was believed to be an alternative therapy for heart failure. Previous experimental studies have shown that biological pacemaker could be produced by genetically manipulating non-pacemaking cardiac cells by suppressing the inward rectifier potassium current (IK1) and expressing the hyperpolarization- activated current (If). However, the role of If in such bio-engineered pacemaker is not clear. In this study, we simulated the action potential of biological pacemaker cells by manipulating If-IK1 parameters (i.e., inhibiting IK1 as well as incorporating If) to analyze possible mechanisms by which different If densities control pacemaking action potentials. Our simulation results showed different pacing mechanism between the bioengineered pacemaking cells with and without If. In addition, it was shown that a greater If density might result in a slower pacing frequency, and excessive of it might produce an early-afterdepolarizations-like action potential due to a sudden release of calcium from sarcoplasmic reticulum into the cytoplasm. This study indicated that when IK1 was significantly suppressed, incorporating If may not enhance the pacing ability of biological pacemaker, but lead to abnormal dynamics of intracellular ionic concentration, increasing risks of dysrhythmia in the heart.
Collapse
|
4
|
Luo C, Whittaker DG, Liu T, Wang K, Li Y, He Y, Zhang H. Pharmacotherapeutic Effects of Quinidine on Short QT Syndrome by Using Purkinje-Ventricle Model: A Simulation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2856-2859. [PMID: 31946488 DOI: 10.1109/embc.2019.8857134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Short QT syndrome (SQTS) arises due to gene mutations leading to accelerated ventricular repolarization, and increased risk of cardiac arrhythmias and sudden cardiac death (SCD). The SQT1, SQT2 and SQT3 variants of the SQTS result from inherited gain-of-function mutations (e.g. N588K, V307L and D172N, respectively) to potassium channels. However, the effective management of SQTS remains a challenge, and is incompletely understood. In this study, computational modelling was used to investigate pharmacotherapeutic effects of selected class I drug quinidine on SQT1, SQT2 and SQT3 variants. METHODS AND RESULTS The biophysically-detailed Stewart et al. model of Purkinje fibre cell action potentials and the ten Tusscher et al. model of ventricular cell action potentials were coupled together into a heterogeneous two-dimensional (2D) tissue model. Previously validated IKr, IKs and IK1 channel formulations for SQT1, SQT2 and SQT3 were incorporated in ventricular cell and tissue models. The channel-blocking effects of quinidine on ionic currents were modelled by using Hill coefficient and IC50 values from the literature. At the 10 μM concentration tested in this study, quinidine effectively prolonged the action potential duration (APD) under all the SQT1, SQT2 and SQT3 conditions. In 2D simulations, quinidine prolonged the ventricular repolarization process and prolonged the QT intervals under all SQTS variants conditions. CONCLUSIONS Our findings provide a rational basis for the pursuit of pharmacotherapeutic agent quinidine in the treatment of all SQTS variants.
Collapse
|