1
|
Weiss E, Kann M, Wang Q. Neuromodulation of Neural Oscillations in Health and Disease. BIOLOGY 2023; 12:371. [PMID: 36979063 PMCID: PMC10045166 DOI: 10.3390/biology12030371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Using EEG and local field potentials (LFPs) as an index of large-scale neural activities, research has been able to associate neural oscillations in different frequency bands with markers of cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us a glimpse into how neurons communicate throughout the brain, the causality of these synchronized network activities remains poorly understood. Moreover, the effect of the major neuromodulatory systems (e.g., noradrenergic, cholinergic, and dopaminergic) on brain oscillations has drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is heavily responsible for mediating network-wide communication across subcortical and cortical brain structures, implicating the importance of neurotransmitters in shaping coordinated actions. By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety of cognitive functions and neurological disorders, and how neuromodulation techniques can be optimized as a means of controlling neural network dynamics. The aim of this review is to showcase the important role that neuromodulatory systems play in large-scale neural network dynamics, informing future studies to pay close attention to their involvement in specific features of neural oscillations and associated behaviors.
Collapse
Affiliation(s)
| | | | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|
2
|
Griggs DJ, Garcia AD, Au WY, Ojemann WKS, Johnson AG, Ting JT, Buffalo EA, Yazdan-Shahmorad A. Improving the Efficacy and Accessibility of Intracranial Viral Vector Delivery in Non-Human Primates. Pharmaceutics 2022; 14:1435. [PMID: 35890331 PMCID: PMC9323200 DOI: 10.3390/pharmaceutics14071435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Non-human primates (NHPs) are precious resources for cutting-edge neuroscientific research, including large-scale viral vector-based experimentation such as optogenetics. We propose to improve surgical outcomes by enhancing the surgical preparation practices of convection-enhanced delivery (CED), which is an efficient viral vector infusion technique for large brains such as NHPs'. Here, we present both real-time and next-day MRI data of CED in the brains of ten NHPs, and we present a quantitative, inexpensive, and practical bench-side model of the in vivo CED data. Our bench-side model is composed of food coloring infused into a transparent agar phantom, and the spread of infusion is optically monitored over time. Our proposed method approximates CED infusions into the cortex, thalamus, medial temporal lobe, and caudate nucleus of NHPs, confirmed by MRI data acquired with either gadolinium-based or manganese-based contrast agents co-infused with optogenetic viral vectors. These methods and data serve to guide researchers and surgical team members in key surgical preparations for intracranial viral delivery using CED in NHPs, and thus improve expression targeting and efficacy and, as a result, reduce surgical risks.
Collapse
Affiliation(s)
- Devon J. Griggs
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA;
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
| | - Aaron D. Garcia
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Wing Yun Au
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (W.Y.A.); (W.K.S.O.)
| | - William K. S. Ojemann
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (W.Y.A.); (W.K.S.O.)
| | - Andrew Graham Johnson
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA;
- Bellevue School District, Bellevue, WA 98005, USA
| | - Jonathan T. Ting
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Elizabeth A. Buffalo
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA;
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (W.Y.A.); (W.K.S.O.)
| |
Collapse
|
3
|
Griggs DJ, Bloch J, Fisher S, Ojemann WKS, Coubrough KM, Khateeb K, Chu M, Yazdan-Shahmorad A. Demonstration of an Optimized Large-scale Optogenetic Cortical Interface for Non-human Primates. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3081-3084. [PMID: 36086548 DOI: 10.1109/embc48229.2022.9871332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Optogenetics is a powerful neuroscientific tool which allows neurons to be modulated by optical stimulation. Despite widespread optogenetic experimentation in small animal models, optogenetics in non-human primates (NHPs) remains a niche field, particularly at the large scales necessary for multi-regional neural research. We previously published a large-scale, chronic optogenetic cortical interface for NHPs which was successful but came with a number of limitations. In this work, we present an optimized interface which improves upon the stability and scale of our previous interface while using more easily replicable methods to increase our system's availability to the scientific community. Specifically, we (1) demonstrate the long-term (~3 months) optical access to the brain achievable using a commercially-available transparent artificial dura with embedded electrodes, (2) showcase large-scale optogenetic expression achievable with simplified (magnetic resonance-free) surgical techniques, and (3) effectively modulated the expressing areas at large scales (~1 cm2) by light emitting diode (LED) arrays assembled in-house.
Collapse
|
4
|
Ting WKC, Fadul FAR, Fecteau S, Ethier C. Neurostimulation for Stroke Rehabilitation. Front Neurosci 2021; 15:649459. [PMID: 34054410 PMCID: PMC8160247 DOI: 10.3389/fnins.2021.649459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Neurological injuries such as strokes can lead to important loss in motor function. Thanks to neuronal plasticity, some of the lost functionality may be recovered over time. However, the recovery process is often slow and incomplete, despite the most effective conventional rehabilitation therapies. As we improve our understanding of the rules governing activity-dependent plasticity, neuromodulation interventions are being developed to harness neural plasticity to achieve faster and more complete recovery. Here, we review the principles underlying stimulation-driven plasticity as well as the most commonly used stimulation techniques and approaches. We argue that increased spatiotemporal precision is an important factor to improve the efficacy of neurostimulation and drive a more useful neuronal reorganization. Consequently, closed-loop systems and optogenetic stimulation hold theoretical promise as interventions to promote brain repair after stroke.
Collapse
Affiliation(s)
- Windsor Kwan-Chun Ting
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Faïza Abdou-Rahaman Fadul
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Shirley Fecteau
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Christian Ethier
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| |
Collapse
|
5
|
Griggs DJ, Khateeb K, Zhou J, Liu T, Wang R, Yazdan-Shahmorad A. Multi-modal artificial dura for simultaneous large-scale optical access and large-scale electrophysiology in non-human primate cortex. J Neural Eng 2021; 18:10.1088/1741-2552/abf28d. [PMID: 33770770 PMCID: PMC8523212 DOI: 10.1088/1741-2552/abf28d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/11/2022]
Abstract
Objective.Non-human primates (NHPs) are critical for development of translational neural technologies because of their neurological and neuroanatomical similarities to humans. Large-scale neural interfaces in NHPs with multiple modalities for stimulation and data collection poise us to unveil network-scale dynamics of both healthy and unhealthy neural systems. We aim to develop a large-scale multi-modal interface for NHPs for the purpose of studying large-scale neural phenomena including neural disease, damage, and recovery.Approach.We present a multi-modal artificial dura (MMAD) composed of flexible conductive traces printed into transparent medical grade polymer. Our MMAD provides simultaneous neurophysiological recordings and optical access to large areas of the cortex (∼3 cm2) and is designed to mitigate photo-induced electrical artifacts. The MMAD is the centerpiece of the interfaces we have designed to support electrocorticographic recording and stimulation, cortical imaging, and optogenetic experiments, all at the large-scales afforded by the brains of NHPs. We performed electrical and optical experiments bench-side andin vivowith macaques to validate the utility of our MMAD.Main results.Using our MMAD we present large-scale electrocorticography from sensorimotor cortex of three macaques. Furthermore, we validated surface electrical stimulation in one of our animals. Our bench-side testing showed up to 90% reduction of photo-induced artifacts with our MMAD. The transparency of our MMAD was confirmed both via bench-side testing (87% transmittance) and viain vivoimaging of blood flow from the underlying microvasculature using optical coherence tomography angiography.Significance.Our results indicate that our MMAD supports large-scale electrocorticography, large-scale cortical imaging, and, by extension, large-scale optical stimulation. The MMAD prepares the way for both acute and long-term chronic experiments with complimentary data collection and stimulation modalities. When paired with the complex behaviors and cognitive abilities of NHPs, these assets prepare us to study large-scale neural phenomena including neural disease, damage, and recovery.
Collapse
Affiliation(s)
- Devon J Griggs
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Karam Khateeb
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Jasmine Zhou
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Teng Liu
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
- Department of Ophthalmology, University of Washington Medicine, Seattle, WA, United States of America
| | - Azadeh Yazdan-Shahmorad
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
6
|
Ojemann WKS, Griggs DJ, Ip Z, Caballero O, Jahanian H, Martinez-Conde S, Macknik S, Yazdan-Shahmorad A. A MRI-Based Toolbox for Neurosurgical Planning in Nonhuman Primates. J Vis Exp 2020:10.3791/61098. [PMID: 32744531 PMCID: PMC8384434 DOI: 10.3791/61098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this paper, we outline a method for surgical preparation that allows for the practical planning of a variety of neurosurgeries in NHPs solely using data extracted from magnetic resonance imaging (MRI). This protocol allows for the generation of 3D printed anatomically accurate physical models of the brain and skull, as well as an agarose gel model of the brain modeling some of the mechanical properties of the brain. These models can be extracted from MRI using brain extraction software for the model of the brain, and custom code for the model of the skull. The preparation protocol takes advantage of state-of-the-art 3D printing technology to make interfacing brains, skulls, and molds for gel brain models. The skull and brain models can be used to visualize brain tissue inside the skull with the addition of a craniotomy in the custom code, allowing for better preparation for surgeries directly involving the brain. The applications of these methods are designed for surgeries involved in neurological stimulation and recording as well as injection, but the versatility of the system allows for future expansion of the protocol, extraction techniques, and models to a wider scope of surgeries.
Collapse
Affiliation(s)
- William K S Ojemann
- Bioengineering Department, University of Washington; Washington National Primate Research Center, University of Washington
| | - Devon J Griggs
- Washington National Primate Research Center, University of Washington; Electrical and Computer Engineering Department, University of Washington
| | - Zachary Ip
- Bioengineering Department, University of Washington; Washington National Primate Research Center, University of Washington
| | - Olivya Caballero
- Department of Ophthalmology, SUNY Downstate Health Sciences University
| | | | | | - Stephen Macknik
- Department of Ophthalmology, SUNY Downstate Health Sciences University
| | - Azadeh Yazdan-Shahmorad
- Bioengineering Department, University of Washington; Washington National Primate Research Center, University of Washington; Electrical and Computer Engineering Department, University of Washington;
| |
Collapse
|
7
|
Khateeb K, Yao Z, Kharazia VN, Burunova EP, Song S, Wang R, Yazdan-Shahmorad A. A Practical Method for Creating Targeted Focal Ischemic Stroke in the Cortex of Nonhuman Primates .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3515-3518. [PMID: 31946636 DOI: 10.1109/embc.2019.8857741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is a major cause of disability among adults worldwide. Despite its prevalence, few effective treatment options exist to alleviate sensory and motor dysfunctions that result from stroke. In the past, rodent models of stroke have been the primary experimental models used to develop stroke therapies. However, positive results in these studies have failed to replicate in human clinical trials, highlighting the importance of nonhuman primate (NHP) models as a preclinical step. Although there are a few NHP models of stroke, the extent of tissue damage is highly variable and dependent on surgical skill. In this study, we employed the photothrombotic stroke model in NHPs to generate controlled, reproducible ischemic lesions. Originally developed in rodents, the photothrombotic technique consists of intravenous injection of a photosensitive dye such as Rose Bengal followed by illumination of an area of interest to induce endothelial damage resulting in the formation of thrombi in the illuminated vasculature. We developed a quantitative model to predict the extent of tissue damage based on the light scattering profile of light in the cortex of NHPs. We then employed this technique in the sensorimotor cortex of two adult male Rhesus Macaques. In vivo optical coherence tomography imaging of the cortical microvasculature and subsequent histology confirmed the formation of focal cortical infarcts and demonstrated its reproducibility and ability to control the sizes and locations of light-induced ischemic lesions in the cortex of NHPs. This model has the potential to enhance our understanding of perilesional neural dynamics and can be used to develop reliable neurorehabilitative therapeutic strategies to treat stroke.
Collapse
|