1
|
Chen W, Yi Z, Lim LJR, Lim RQR, Zhang A, Qian Z, Huang J, He J, Liu B. Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement. Front Bioeng Biotechnol 2024; 12:1420100. [PMID: 39104628 PMCID: PMC11298756 DOI: 10.3389/fbioe.2024.1420100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
In recent decades, there has been ongoing development in the application of computer vision (CV) in the medical field. As conventional contact-based physiological measurement techniques often restrict a patient's mobility in the clinical environment, the ability to achieve continuous, comfortable and convenient monitoring is thus a topic of interest to researchers. One type of CV application is remote imaging photoplethysmography (rPPG), which can predict vital signs using a video or image. While contactless physiological measurement techniques have an excellent application prospect, the lack of uniformity or standardization of contactless vital monitoring methods limits their application in remote healthcare/telehealth settings. Several methods have been developed to improve this limitation and solve the heterogeneity of video signals caused by movement, lighting, and equipment. The fundamental algorithms include traditional algorithms with optimization and developing deep learning (DL) algorithms. This article aims to provide an in-depth review of current Artificial Intelligence (AI) methods using CV and DL in contactless physiological measurement and a comprehensive summary of the latest development of contactless measurement techniques for skin perfusion, respiratory rate, blood oxygen saturation, heart rate, heart rate variability, and blood pressure.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhe Yi
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Lincoln Jian Rong Lim
- Department of Medical Imaging, Western Health, Footscray Hospital, Footscray, VIC, Australia
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Qian Ru Lim
- Department of Hand & Reconstructive Microsurgery, Singapore General Hospital, Singapore, Singapore
| | - Aijie Zhang
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhen Qian
- Institute of Intelligent Diagnostics, Beijing United-Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Jiaxing Huang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jia He
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Liu
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| |
Collapse
|
2
|
Boccignone G, D’Amelio A, Ghezzi O, Grossi G, Lanzarotti R. An Evaluation of Non-Contact Photoplethysmography-Based Methods for Remote Respiratory Rate Estimation. SENSORS (BASEL, SWITZERLAND) 2023; 23:3387. [PMID: 37050444 PMCID: PMC10098914 DOI: 10.3390/s23073387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation.
Collapse
Affiliation(s)
| | | | | | | | - Raffaella Lanzarotti
- PHuSe Laboratory—Dipartimento di Informatica, Università degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy
| |
Collapse
|
3
|
Gwak M, Vatanparvar K, Kuang J, Gao A. Motion- Based Respiratory Rate Estimation with Motion Artifact Removal Using Video of Face and Upper Body. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1961-1967. [PMID: 36086435 DOI: 10.1109/embc48229.2022.9871231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Respiratory rate (RR) is a significant indicator of health conditions. Remote contactless measurement of RR is gaining popularity with recent respiratory tract infection awareness. Among various methods of contactless RR measurement, a video of an individual can be used to obtain an instantaneous RR. In this paper, we introduce an RR estimation based on the subtle motion of the head or upper chest captured on an RGB camera. Motion-based respiratory monitoring allows us to acquire RR from individuals with partial face coverings, such as glasses or a face mask. However, motion-based RR estimation is vulnerable to the subject's voluntary movement. In this work, adaptive selection between face and chest regions plus a motion artifact removal technique enables us to obtain a much cleaner respiratory signal from the video recordings. The average mean absolute error (MAE) for controlled and natural breathing is 1.95 BPM using head motion only and 1.28 BPM using chest motion only. Our results demonstrate the possibility of continuous monitoring of breathing rate in real-time with any personal device equipped with an RGB camera, such as a laptop or a smartphone.
Collapse
|
4
|
Romano C, Schena E, Silvestri S, Massaroni C. Non-Contact Respiratory Monitoring Using an RGB Camera for Real-World Applications. SENSORS 2021; 21:s21155126. [PMID: 34372363 PMCID: PMC8347288 DOI: 10.3390/s21155126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022]
Abstract
Respiratory monitoring is receiving growing interest in different fields of use, ranging from healthcare to occupational settings. Only recently, non-contact measuring systems have been developed to measure the respiratory rate (fR) over time, even in unconstrained environments. Promising methods rely on the analysis of video-frames features recorded from cameras. In this work, a low-cost and unobtrusive measuring system for respiratory pattern monitoring based on the analysis of RGB images recorded from a consumer-grade camera is proposed. The system allows (i) the automatized tracking of the chest movements caused by breathing, (ii) the extraction of the breathing signal from images with methods based on optical flow (FO) and RGB analysis, (iii) the elimination of breathing-unrelated events from the signal, (iv) the identification of possible apneas and, (v) the calculation of fR value every second. Unlike most of the work in the literature, the performances of the system have been tested in an unstructured environment considering user-camera distance and user posture as influencing factors. A total of 24 healthy volunteers were enrolled for the validation tests. Better performances were obtained when the users were in sitting position. FO method outperforms in all conditions. In the fR range 6 to 60 breaths/min (bpm), the FO allows measuring fR values with bias of −0.03 ± 1.38 bpm and −0.02 ± 1.92 bpm when compared to a reference wearable system with the user at 2 and 0.5 m from the camera, respectively.
Collapse
|