1
|
Pernice R, Volpes G, Krohova JC, Javorka M, Busacca A, Faes L. Feasibility of Linear Parametric Estimation of Dynamic Information Measures to assess Physiological Stress from Short-Term Cardiovascular Variability . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:290-293. [PMID: 34891293 DOI: 10.1109/embc46164.2021.9630697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extensive efforts have been recently devoted to implement fast and reliable algorithms capable of assessing the physiological response of the organism to physiological stress. In this study, we propose the comparison between model-free and linear parametric methods as regards their ability to detect alterations in the dynamics and in the complexity of cardiovascular and respiratory variability evoked by postural and mental stress. Dynamic entropy (DE) and information storage (IS) measures were calculated on three physiological time-series, i.e. heart period, respiratory volume and systolic arterial pressure, on 61 healthy subjects monitored in resting conditions as well as during head-up tilt and while performing a mental arithmetic task. The results of the comparison suggest the feasibility of DE and IS measures computed from different physiological signals to discriminate among resting and stress states. If compared to the model-free algorithm, the faster linear method appears to be capable of detecting the same (or even more) statistically significant variations of DE or IS between resting and stress conditions, being thus in perspective more suitable for the integration within wearable devices. The computation of entropy indices extracted from multiple physiological signals acquired through wearables will allow a real-time stress assessment on people in daily-life situations.
Collapse
|
2
|
Chiera M, Cerritelli F, Casini A, Barsotti N, Boschiero D, Cavigioli F, Corti CG, Manzotti A. Heart Rate Variability in the Perinatal Period: A Critical and Conceptual Review. Front Neurosci 2020; 14:561186. [PMID: 33071738 PMCID: PMC7544983 DOI: 10.3389/fnins.2020.561186] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Neonatal intensive care units (NICUs) greatly expand the use of technology. There is a need to accurately diagnose discomfort, pain, and complications, such as sepsis, mainly before they occur. While specific treatments are possible, they are often time-consuming, invasive, or painful, with detrimental effects for the development of the infant. In the last 40 years, heart rate variability (HRV) has emerged as a non-invasive measurement to monitor newborns and infants, but it still is underused. Hence, the present paper aims to review the utility of HRV in neonatology and the instruments available to assess it, showing how HRV could be an innovative tool in the years to come. When continuously monitored, HRV could help assess the baby’s overall wellbeing and neurological development to detect stress-/pain-related behaviors or pathological conditions, such as respiratory distress syndrome and hyperbilirubinemia, to address when to perform procedures to reduce the baby’s stress/pain and interventions, such as therapeutic hypothermia, and to avoid severe complications, such as sepsis and necrotizing enterocolitis, thus reducing mortality. Based on literature and previous experiences, the first step to efficiently introduce HRV in the NICUs could consist in a monitoring system that uses photoplethysmography, which is low-cost and non-invasive, and displays one or a few metrics with good clinical utility. However, to fully harness HRV clinical potential and to greatly improve neonatal care, the monitoring systems will have to rely on modern bioinformatics (machine learning and artificial intelligence algorithms), which could easily integrate infant’s HRV metrics, vital signs, and especially past history, thus elaborating models capable to efficiently monitor and predict the infant’s clinical conditions. For this reason, hospitals and institutions will have to establish tight collaborations between the obstetric, neonatal, and pediatric departments: this way, healthcare would truly improve in every stage of the perinatal period (from conception to the first years of life), since information about patients’ health would flow freely among different professionals, and high-quality research could be performed integrating the data recorded in those departments.
Collapse
Affiliation(s)
- Marco Chiera
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy.,Research Commission on Manual Therapies and Mind-Body Disciplines, Societ Italiana di Psico Neuro Endocrino Immunologia, Rome, Italy
| | - Francesco Cerritelli
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Alessandro Casini
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Nicola Barsotti
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy.,Research Commission on Manual Therapies and Mind-Body Disciplines, Societ Italiana di Psico Neuro Endocrino Immunologia, Rome, Italy
| | | | - Francesco Cavigioli
- Neonatal Intensive Care Unit, "V. Buzzi" Children's Hospital, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Milan, Italy
| | - Carla G Corti
- Pediatric Cardiology Unit-Pediatric Department, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Milan, Italy
| | - Andrea Manzotti
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy.,Neonatal Intensive Care Unit, "V. Buzzi" Children's Hospital, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Milan, Italy.,Research Department, SOMA, Istituto Osteopatia Milano, Milan, Italy
| |
Collapse
|