1
|
Abdallah T, Jrad N, El Hajjar S, Abdallah F, Humeau-Heurtier A, El Howayek E, Van Bogaert P. Deep Clustering for Epileptic Seizure Detection. IEEE Trans Biomed Eng 2025; 72:480-492. [PMID: 39255079 DOI: 10.1109/tbme.2024.3458177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurrent epileptic seizures, which are often unpredictable and increase mortality and morbidity risks. OBJECTIVE The objective of this study is to address the challenges of EEG-based epileptic seizure detection by introducing a novel methodology, Deep Embedded Gaussian Mixture (DEGM). METHODS The DEGM method begins with a deep autoencoder (DAE) for embedding the input EEG data, followed by Singular Value Decomposition (SVD) to enhance the representational quality of the embedding while achieving dimensionality reduction. A Gaussian Mixture Model (GMM) is then employed for clustering purposes. Unlike conventional supervised machine learning and deep learning techniques, DEGM leverages deep clustering (DC) algorithms for more effective seizure detection. RESULTS Empirical results from two real-world epileptic datasets demonstrate the notable performance of DEGM. The method's effectiveness is particularly remarkable given the substantial size of the datasets, showcasing its ability to handle large-scale EEG data efficiently. CONCLUSION In conclusion, the DEGM methodology provides a novel and effective approach for EEG-based epileptic seizure detection, addressing key challenges such as data variability and artifact contamination. SIGNIFICANCE By combining deep autoencoders, SVD, and GMM, DEGM achieves superior clustering performance compared to existing methods, representing a significant advancement in biomedical research and clinical applications for epilepsy. Its robust performance on large datasets underscores its potential for improving seizure detection accuracy, ultimately contributing to better patient outcomes.
Collapse
|
2
|
Nikouei M, Abdali-Mohammadi F. A novel method for modeling effective connections between brain regions based on EEG signals and graph neural networks for motor imagery detection. Comput Methods Biomech Biomed Engin 2024; 27:1430-1447. [PMID: 37548428 DOI: 10.1080/10255842.2023.2244110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Classified as biomedical signal processing, cerebral signal processing plays a key role in human-computer interaction (HCI) and medical diagnosis. The motor imagery (MI) problem is an important research area in this field. Accurate solutions to this problem will greatly affect real-world applications. Most of the proposed methods are based on raw signal processing techniques. Known as prior knowledge, the structural-functional information and interregional connections can improve signal processing accuracy. It is possible to correctly perceive the generated signals by considering the brain structure (i.e. anatomical units), the source of signals, and the structural-functional dependence of different brain regions (i.e. effective connection) that are the semantic generators of signals. This study employed electroencephalograph (EEG) signals based on the activity of brain regions (cortex) and effective connections between brain regions based on dynamic causal modeling to solve the MI problem. EEG signals, as well as effective connections between brain regions to improve the interpretability of MI action, were fed into the architecture of Graph Convolutional Neural Network (GCN). The proposed model allowed GCN to extract more discriminative features. The results indicated that the proposed method was successful in developing a model with a MI detection accuracy of 93.73%.
Collapse
Affiliation(s)
- Mahya Nikouei
- Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
| | - Fardin Abdali-Mohammadi
- Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Patro KK, Prakash AJ, Sahoo JP, Routray S, Baihan A, Samee NA, Huang G. SMARTSeiz: Deep Learning With Attention Mechanism for Accurate Seizure Recognition in IoT Healthcare Devices. IEEE J Biomed Health Inform 2024; 28:3810-3818. [PMID: 38055360 DOI: 10.1109/jbhi.2023.3336935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The Internet of Things (IoT) is capable of controlling the healthcare monitoring system for remote-based patients. Epilepsy, a chronic brain syndrome characterized by recurrent, unpredictable attacks, affects individuals of all ages. IoT-based seizure monitoring can greatly enhance seizure patients' quality of life. IoT device acquires patient data and transmits it to a computer program so that doctors can examine it. Currently, doctors invest significant manual effort in inspecting Electroencephalograph (EEG) signals to identify seizure activity. However, EEG-based seizure detection algorithms face challenges in real-world scenarios due to non-stationary EEG data and variable seizure patterns among patients and recording sessions. Therefore, a sophisticated computer-based approach is necessary to analyze complex EEG records. In this work, the authors proposed a hybrid approach by combining traditional convolution neural (CN) and recurrent neural networks (RNN) along with an attention mechanism for the automatic recognition of epileptic seizures through EEG signal analysis. This attention mechanism focuses on significant subsets of EEG data for class recognition, resulting in improved model performance. The proposed methods are evaluated using a publicly available UCI epileptic seizure recognition dataset, which consists of five classes: four normal conditions and one abnormal seizure condition. Experimental results demonstrate that the suggested approach achieves an overall accuracy of 97.05% for the five-class EEG recognition data, with an accuracy of 99.52% for binary classification distinguishing seizure cases from normal instances. Furthermore, the proposed intelligent seizure recognition model is compatible with an IoMT (Internet of Medical Things) cloud-based smart healthcare framework.
Collapse
|
4
|
Patel SA, Yildirim A. Non-stationary neural signal to image conversion framework for image-based deep learning algorithms. Front Neuroinform 2023; 17:1081160. [PMID: 37035716 PMCID: PMC10079945 DOI: 10.3389/fninf.2023.1081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
This paper presents a time-efficient preprocessing framework that converts any given 1D physiological signal recordings into a 2D image representation for training image-based deep learning models. The non-stationary signal is rasterized into the 2D image using Bresenham's line algorithm with time complexity O(n). The robustness of the proposed approach is evaluated based on two publicly available datasets. This study classified three different neural spikes (multi-class) and EEG epileptic seizure and non-seizure (binary class) based on shapes using a modified 2D Convolution Neural Network (2D CNN). The multi-class dataset consists of artificially simulated neural recordings with different Signal-to-Noise Ratios (SNR). The 2D CNN architecture showed significant performance for all individual SNRs scores with (SNR/ACC): 0.5/99.69, 0.75/99.69, 1.0/99.49, 1.25/98.85, 1.5/97.43, 1.75/95.20 and 2.0/91.98. Additionally, the binary class dataset also achieved 97.52% accuracy by outperforming several others proposed algorithms. Likewise, this approach could be employed on other biomedical signals such as Electrocardiograph (EKG) and Electromyography (EMG).
Collapse
Affiliation(s)
- Sahaj Anilbhai Patel
- Department of Electrical and Computer Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
5
|
Ibrahim FE, Emara HM, El-Shafai W, Elwekeil M, Rihan M, Eldokany IM, Taha TE, El-Fishawy AS, El-Rabaie ESM, Abdellatef E, Abd El-Samie FE. Deep-learning-based seizure detection and prediction from electroencephalography signals. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3573. [PMID: 35077027 DOI: 10.1002/cnm.3573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Electroencephalography (EEG) is among the main tools used for analyzing and diagnosing epilepsy. The manual analysis of EEG must be conducted by highly trained clinicians or neuro-physiologists; a process that is considered to have a comparatively low inter-rater agreement. Furthermore, the new data interpretation consumes an excessive amount of time and resources. Hence, an automatic seizure detection and prediction system can improve the quality of patient care in terms of shortening the diagnosis period, reducing manual errors, and automatically detecting debilitating events. Moreover, for patient treatment, it is important to alert the patients of epilepsy seizures prior to seizure occurrence. Various distinguished studies presented good solutions for two-class seizure detection problems with binary classification scenarios. To deal with these challenges, this paper puts forward effective approaches for EEG signal classification for normal, pre-ictal, and ictal activities. Three models are presented for the classification task. Two of them are patient-specific, while the third one is patient non-specific, which makes it better for the general classification tasks. The two-class classification is implemented between normal and pre-ictal activities for seizure prediction and between normal and ictal activities for seizure detection. A more generalized three-class classification framework is considered to identify all EEG signal activities. The first model depends on a Convolutional Neural Network (CNN) with residual blocks. It contains thirteen layers with four residual learning blocks. It works on spectrograms of EEG signal segments. The second model depends on a CNN with three layers. It also works on spectrograms. On the other hand, the third model depends on Phase Space Reconstruction (PSR) to eliminate the limitations of the spectrograms used in the first models. A five-layer CNN is used with this strategy. The advantage of the PSR is the direct projection from the time domain, which keeps the main trend of different signal activities. The third model deals with all signal activities, and it was tested for all patients of the CHB-MIT dataset. It has a superior performance compared to the first models and the state-of-the-art models.
Collapse
Affiliation(s)
- Fatma E Ibrahim
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Heba M Emara
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Walid El-Shafai
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
- Security Engineering Lab, Computer Science Department, Prince Sultan University, Riyadh, Saudi Arabia
| | - Mohamed Elwekeil
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
- Department of Electrical and Information Engineering (DIEI), University of Cassino and Southern Lazio, Cassino, 03043, Italy
| | - Mohamed Rihan
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
- Department of Electrical and Information Engineering (DIEI), University of Cassino and Southern Lazio, Cassino, 03043, Italy
| | - Ibrahim M Eldokany
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Taha E Taha
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Adel S El-Fishawy
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - El-Sayed M El-Rabaie
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Essam Abdellatef
- Delta Higher Institute for Engineering and Technology (DHIET), Mansoura, Egypt
| | - Fathi E Abd El-Samie
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
- Department of Information Technology, College of Computer and Information sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Keerthi Krishnan K, Soman KP. CNN based classification of motor imaginary using variational mode decomposed EEG-spectrum image. Biomed Eng Lett 2021; 11:235-247. [PMID: 34350050 DOI: 10.1007/s13534-021-00190-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
A novel approach of preprocessing EEG signals by generating spectrum image for effective Convolutional Neural Network (CNN) based classification for Motor Imaginary (MI) recognition is proposed. The approach involves extracting the Variational Mode Decomposition (VMD) modes of EEG signals, from which the Short Time Fourier Transform (STFT) of all the modes are arranged to form EEG spectrum images. The EEG spectrum images generated are provided as input image to CNN. The two generic CNN architectures for MI classification (EEGNet and DeepConvNet) and the architectures for pattern recognition (AlexNet and LeNet) are used in this study. Among the four architectures, EEGNet provides average accuracies of 91.37%, 94.41%, 85.67% and 90.21% for the four datasets used to validate the proposed approach. Consistently better results in comparison with results in recent literature demonstrate that the EEG spectrum image generation using VMD-STFT is a promising method for the time frequency analysis of EEG signals.
Collapse
Affiliation(s)
- K Keerthi Krishnan
- Center for Computational Engineering Networking (CEN),Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - K P Soman
- Center for Computational Engineering Networking (CEN),Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
7
|
A Study on Seizure Detection of EEG Signals Represented in 2D. SENSORS 2021; 21:s21155145. [PMID: 34372381 PMCID: PMC8348755 DOI: 10.3390/s21155145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
A seizure is a neurological disorder caused by abnormal neuronal discharges in the brain, which severely reduces the quality of life of patients and often endangers their lives. Automatic seizure detection is an important research area in the treatment of seizure and is a prerequisite for seizure intervention. Deep learning has been widely used for automatic detection of seizures, and many related research works decomposed the electroencephalogram (EEG) raw signal with a time window to obtain EEG signal slices, then performed feature extraction on the slices, and represented the obtained features as input data for neural networks. There are various methods for EEG signal decomposition, feature extraction, and representation, and most of the studies have been based on fixed hardware resources for the design of the scheme, which reduces the adaptability of the scheme in different application scenarios and makes it difficult to optimize the algorithms in the scheme. To address the above issues, this paper proposes a deep learning-based model for seizure detection, mainly characterized by the two-dimensional representation of EEG features and the scalability of neural networks. The model modularizes the main steps of seizure detection and improves the adaptability of the model to different hardware resource constraints, in order to increase the convenience of the algorithm optimization or the replacement of each module. The proposed model consists of five parts, and the model was tested using two epilepsy datasets separately. The experimental results showed that the proposed model has strong generality and good classification accuracy for seizure detection.
Collapse
|
8
|
Shoeibi A, Khodatars M, Ghassemi N, Jafari M, Moridian P, Alizadehsani R, Panahiazar M, Khozeimeh F, Zare A, Hosseini-Nejad H, Khosravi A, Atiya AF, Aminshahidi D, Hussain S, Rouhani M, Nahavandi S, Acharya UR. Epileptic Seizures Detection Using Deep Learning Techniques: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5780. [PMID: 34072232 PMCID: PMC8199071 DOI: 10.3390/ijerph18115780] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
A variety of screening approaches have been proposed to diagnose epileptic seizures, using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities. Artificial intelligence encompasses a variety of areas, and one of its branches is deep learning (DL). Before the rise of DL, conventional machine learning algorithms involving feature extraction were performed. This limited their performance to the ability of those handcrafting the features. However, in DL, the extraction of features and classification are entirely automated. The advent of these techniques in many areas of medicine, such as in the diagnosis of epileptic seizures, has made significant advances. In this study, a comprehensive overview of works focused on automated epileptic seizure detection using DL techniques and neuroimaging modalities is presented. Various methods proposed to diagnose epileptic seizures automatically using EEG and MRI modalities are described. In addition, rehabilitation systems developed for epileptic seizures using DL have been analyzed, and a summary is provided. The rehabilitation tools include cloud computing techniques and hardware required for implementation of DL algorithms. The important challenges in accurate detection of automated epileptic seizures using DL with EEG and MRI modalities are discussed. The advantages and limitations in employing DL-based techniques for epileptic seizures diagnosis are presented. Finally, the most promising DL models proposed and possible future works on automated epileptic seizure detection are delineated.
Collapse
Affiliation(s)
- Afshin Shoeibi
- Faculty of Electrical Engineering, Biomedical Data Acquisition Lab (BDAL), K. N. Toosi University of Technology, Tehran 1631714191, Iran;
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | | | - Navid Ghassemi
- Faculty of Electrical Engineering, Biomedical Data Acquisition Lab (BDAL), K. N. Toosi University of Technology, Tehran 1631714191, Iran;
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty, Semnan University, Semnan 3513119111, Iran;
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, School of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad 6518115743, Iran;
| | - Hossein Hosseini-Nejad
- Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran 1631714191, Iran;
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Amir F. Atiya
- Department of Computer Engineering, Faculty of Engineering, Cairo University, Cairo 12613, Egypt;
| | - Diba Aminshahidi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Sadiq Hussain
- System Administrator at Dibrugarh University, Assam 786004, India;
| | - Modjtaba Rouhani
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Udyavara Rajendra Acharya
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Bioinformatics and Medical Engineering, Taichung City 41354, Taiwan
| |
Collapse
|
9
|
Siddharth S, Jung TP, Sejnowski TJ. Impact of Affective Multimedia Content on the Electroencephalogram and Facial Expressions. Sci Rep 2019; 9:16295. [PMID: 31705031 PMCID: PMC6841664 DOI: 10.1038/s41598-019-52891-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022] Open
Abstract
Most of the research in the field of affective computing has focused on detecting and classifying human emotions through electroencephalogram (EEG) or facial expressions. Designing multimedia content to evoke certain emotions has been largely motivated by manual rating provided by users. Here we present insights from the correlation of affective features between three modalities namely, affective multimedia content, EEG, and facial expressions. Interestingly, low-level Audio-visual features such as contrast and homogeneity of the video and tone of the audio in the movie clips are most correlated with changes in facial expressions and EEG. We also detect the regions associated with the human face and the brain (in addition to the EEG frequency bands) that are most representative of affective responses. The computational modeling between the three modalities showed a high correlation between features from these regions and user-reported affective labels. Finally, the correlation between different layers of convolutional neural networks with EEG and Face images as input provides insights into human affection. Together, these findings will assist in (1) designing more effective multimedia contents to engage or influence the viewers, (2) understanding the brain/body bio-markers of affection, and (3) developing newer brain-computer interfaces as well as facial-expression-based algorithms to read emotional responses of the viewers.
Collapse
Affiliation(s)
- Siddharth Siddharth
- Electrical and Computer Engineering Department, University of California San Diego, La Jolla, 92093, USA.
- Institute for Neural Computation, University of California San Diego, La Jolla, 92093, USA.
| | - Tzyy-Ping Jung
- Institute for Neural Computation, University of California San Diego, La Jolla, 92093, USA
| | - Terrence J Sejnowski
- Institute for Neural Computation, University of California San Diego, La Jolla, 92093, USA
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| |
Collapse
|