Borsky M, Serwatko M, Arnardottir ES, Mallett J. Towards Sleep Study Automation: Detection Evaluation of Respiratory-Related Events.
IEEE J Biomed Health Inform 2022;
26:3418-3426. [PMID:
35294367 DOI:
10.1109/jbhi.2022.3159727]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The diagnosis of sleep disordered breathing depends on the detection of several respiratory-related events: apneas, hypopneas, snores, or respiratory event-related arousals from sleep studies. While a number of automatic detection methods have been proposed, reproducibility of these methods has been an issue, in part due to the absence of a generally accepted protocol for evaluating their results. With sleep measurements this is usually treated as a classification problem and the accompanying issue of localization is not treated as similarly critical. To address these problems we present a detection evaluation protocol that is able to qualitatively assess the match between two annotations of respiratory-related events. This protocol relies on measuring the relative temporal overlap between two annotations in order to find an alignment that maximizes their F1-score at the sequence level. This protocol can be used in applications which require a precise estimate of the number of events, total event duration, and a joint estimate of event number and duration. We assess its application using a data set that contains over 10,000 manually annotated snore events from 9 subjects, and show that when using the American Academy of Sleep Medicine Manual standard, two sleep technologists can achieve an F1-score of 0.88 when identifying the presence of snore events. In addition, we drafted rules for marking snore boundaries and showed that one sleep technologist can achieve F1-score of 0.94 at the same tasks. Finally, we compared our protocol against the protocol that is used to evaluate sleep spindle detection and highlighted the differences.
Collapse