1
|
Hume RD, Kanagalingam S, Deshmukh T, Chen S, Mithieux SM, Rashid FN, Roohani I, Lu J, Doan T, Graham D, Clayton ZE, Slaughter E, Kizana E, Stempien-Otero AS, Brown P, Thomas L, Weiss AS, Chong JJ. Tropoelastin Improves Post-Infarct Cardiac Function. Circ Res 2023; 132:72-86. [PMID: 36453283 PMCID: PMC9829044 DOI: 10.1161/circresaha.122.321123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.
Collapse
Affiliation(s)
- Robert D. Hume
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Shaan Kanagalingam
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Tejas Deshmukh
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Siqi Chen
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Suzanne M. Mithieux
- Charles Perkins Centre, University of Sydney, NSW, Australia (S.M.M., A.S.W.).,School of Life and Environmental Sciences, University of Sydney, NSW, Australia (S.M.M., A.S.W.)
| | - Fairooj N. Rashid
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Iman Roohani
- School of Biomedical Engineering, University of Sydney, NSW, Australia (I.R.).,School of Chemistry, University of New South Wales, Australia (I.R.)
| | - Juntang Lu
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Tram Doan
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.)
| | - Dinny Graham
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.).,Westmead Breast Cancer Institute, NSW, Australia (D.G.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | - Zoe E. Clayton
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | | | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - April S. Stempien-Otero
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA (A.S.S.-O.)
| | - Paula Brown
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | | | - James J.H. Chong
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| |
Collapse
|
2
|
Leong CO, Leong CN, Liew YM, Al Abed A, Aziz YFA, Chee KH, Sridhar GS, Dokos S, Lim E. The role of regional myocardial topography post-myocardial infarction on infarct extension. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3501. [PMID: 34057819 DOI: 10.1002/cnm.3501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Infarct extension involves necrosis of healthy myocardium in the border zone (BZ), progressively enlarging the infarct zone (IZ) and recruiting the remote zone (RZ) into the BZ, eventually leading to heart failure. The mechanisms underlying infarct extension remain unclear, but myocyte stretching has been suggested as the most likely cause. Using human patient-specific left-ventricular (LV) numerical simulations established from cardiac magnetic resonance imaging (MRI) of myocardial infarction (MI) patients, the correlation between infarct extension and regional mechanics abnormality was investigated by analysing the fibre stress-strain loops (FSSLs). FSSL abnormality was characterised using the directional regional external work (DREW) index, which measures FSSL area and loop direction. Sensitivity studies were also performed to investigate the effect of infarct stiffness on regional myocardial mechanics and potential for infarct extension. We found that infarct extension was correlated to severely abnormal FSSL in the form of counter-clockwise loop at the RZ close to the infarct, as indicated by negative DREW values. In regions demonstrating negative DREW values, we observed substantial fibre stretching in the isovolumic relaxation (IVR) phase accompanied by a reduced rate of systolic shortening. Such stretching in IVR phase in part of the RZ was due to its inability to withstand the high LV pressure that was still present and possibly caused by regional myocardial stiffness inhomogeneity. Further analysis revealed that the occurrence of severely abnormal FSSL due to IVR fibre stretching near the RZ-BZ boundary was due to a large amount of surrounding infarcted tissue, or an excessively stiff IZ.
Collapse
Affiliation(s)
- Chen Onn Leong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Neng Leong
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yang Faridah Abdul Aziz
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Han Chee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Socrates Dokos
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|