1
|
Stadlhofer R, Moritz M, Fuh MM, Heeren J, Zech H, Clauditz TS, Schlüter H, Betz CS, Eggert D, Böttcher A, Hahn J. Lipidome Analysis of Oropharyngeal Tumor Tissues Using Nanosecond Infrared Laser (NIRL) Tissue Sampling and Subsequent Mass Spectrometry. Int J Mol Sci 2023; 24:ijms24097820. [PMID: 37175533 PMCID: PMC10178251 DOI: 10.3390/ijms24097820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Ultrashort pulse infrared lasers can simultaneously sample and homogenize biological tissue using desorption by impulsive vibrational excitation (DIVE). With growing attention on alterations in lipid metabolism in malignant disease, mass spectrometry (MS)-based lipidomic analysis has become an emerging topic in cancer research. In this pilot study, we investigated the feasibility of tissue sampling with a nanosecond infrared laser (NIRL) for the subsequent lipidomic analysis of oropharyngeal tissues, and its potential to discriminate oropharyngeal squamous cell carcinoma (OPSCC) from non-tumorous oropharyngeal tissue. Eleven fresh frozen oropharyngeal tissue samples were ablated. The produced aerosols were collected by a glass fiber filter, and the lipidomes were analyzed with mass spectrometry. Data was evaluated by principal component analysis and Welch's t-tests. Lipid profiles comprised 13 lipid classes and up to 755 lipid species. We found significant inter- and intrapatient alterations in lipid profiles for tumor and non-tumor samples (p-value < 0.05, two-fold difference). Thus, NIRL tissue sampling with consecutive MS lipidomic analysis is a feasible and promising approach for the differentiation of OPSCC and non-tumorous oropharyngeal tissue and may provide new insights into lipid composition alterations in OPSCC.
Collapse
Affiliation(s)
- Rupert Stadlhofer
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuela Moritz
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Henrike Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Till S Clauditz
- Department of Pathology, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian S Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Dennis Eggert
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jan Hahn
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Schlüter M, Glandorf L, Gromniak M, Saathoff T, Schlaefer A. Concept for Markerless 6D Tracking Employing Volumetric Optical Coherence Tomography. SENSORS 2020; 20:s20092678. [PMID: 32397153 PMCID: PMC7248981 DOI: 10.3390/s20092678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022]
Abstract
Optical tracking systems are widely used, for example, to navigate medical interventions. Typically, they require the presence of known geometrical structures, the placement of artificial markers, or a prominent texture on the target’s surface. In this work, we propose a 6D tracking approach employing volumetric optical coherence tomography (OCT) images. OCT has a micrometer-scale resolution and employs near-infrared light to penetrate few millimeters into, for example, tissue. Thereby, it provides sub-surface information which we use to track arbitrary targets, even with poorly structured surfaces, without requiring markers. Our proposed system can shift the OCT’s field-of-view in space and uses an adaptive correlation filter to estimate the motion at multiple locations on the target. This allows one to estimate the target’s position and orientation. We show that our approach is able to track translational motion with root-mean-squared errors below 0.25 mm and in-plane rotations with errors below 0.3°. For out-of-plane rotations, our prototypical system can achieve errors around 0.6°.
Collapse
|