1
|
Cetinkaya E, Lang EJ, Sahin M. Sensorimotor content of multi-unit activity recorded in the paramedian lobule of the cerebellum using carbon fiber microelectrode arrays. Front Neurosci 2024; 18:1232653. [PMID: 38486968 PMCID: PMC10937354 DOI: 10.3389/fnins.2024.1232653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
The cerebellum takes in a great deal of sensory information from the periphery and descending signals from the cerebral cortices. It has been debated whether the paramedian lobule (PML) in the rat and its paravermal regions that project to the interpositus nucleus (IPN) are primarily involved in motor execution or motor planning. Studies that have relied on single spike recordings in behaving animals have led to conflicting conclusions regarding this issue. In this study, we tried a different approach and investigated the correlation of field potentials and multi-unit signals recorded with multi-electrode arrays from the PML cortex along with the forelimb electromyography (EMG) signals in rats during behavior. Linear regression was performed to predict the EMG signal envelopes using the PML activity for various time shifts (±25, ±50, ±100, and ± 400 ms) between the two signals to determine a causal relation. The highest correlations (~0.5 on average) between the neural and EMG envelopes were observed for zero and small (±25 ms) time shifts and decreased with larger time shifts in both directions, suggesting that paravermal PML is involved both in processing of sensory signals and motor execution in the context of forelimb reaching behavior. EMG envelopes were predicted with higher success rates when neural signals from multiple phases of the behavior were utilized for regression. The forelimb extension phase was the most difficult to predict while the releasing of the bar phase prediction was the most successful. The high frequency (>300 Hz) components of the neural signal, reflecting multi-unit activity, had a higher contribution to the EMG prediction than did the lower frequency components, corresponding to local field potentials. The results of this study suggest that the paravermal PML in the rat cerebellum is primarily involved in the execution of forelimb movements rather than the planning aspect and that the PML is more active at the initiation and termination of the behavior, rather than the progression.
Collapse
Affiliation(s)
- Esma Cetinkaya
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Eric J. Lang
- Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Mesut Sahin
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
2
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
3
|
Liu X, Lin W, Zhang L, Zhang WL, Cheng XP, Lian YH, Li MC, Wang SZ, Chen XY, Gan SR. Effects of cerebellar transcranial alternating current stimulation in cerebellar ataxia: study protocol for a randomised controlled trial. Front Neurosci 2023; 17:1180454. [PMID: 37179566 PMCID: PMC10172579 DOI: 10.3389/fnins.2023.1180454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Background Cerebellar ataxia (CA) is a movement disorder that can affect balance and gait, limb movement, oculomotor control, and cognition. Multiple system atrophy-cerebellar type (MSA-C) and spinocerebellar ataxia type 3 (SCA3) are the most common forms of CA, for which no effective treatment is currently available. Transcranial alternating current stimulation (tACS) is a non-invasive method of brain stimulation supposed to alter cortical excitability and brain electrical activity, modulating functional connectivity within the brain. The cerebellar tACS can modulate the cerebellar outflow and cerebellum-linked behavior and it is a proven safe technique for humans. Therefore, the aim of this study is to 1) examine whether cerebellar tACS improves ataxia severity and various non-motor symptoms in a homogeneous cohort of CA patients consisting of MSA-C and SCA3, 2) explore the time course of these effects, and 3) assess the safety and tolerance of cerebellar tACS in all participants. Methods/design This is a 2-week, triple-blind, randomised, sham-controlled study. 164 patients (MSA-C: 84, SCA3: 80) will be recruited and randomly assigned to either active cerebellar tACS or sham cerebellar tACS, in a 1:1 ratio. Patients, investigators, and outcome assessors are unaware of treatment allocation. Cerebellar tACS (40 min, 2 mA, ramp-up and down periods of 10s each) will be delivered over 10 sessions, distributed in two groups of five consecutive days with a two-day break in between. Outcomes are assessed after the tenth stimulation (T1), and after 1 month (T2) and 3 months (T3). The primary outcome measure is the difference between the active and sham groups in the proportion of patients with an improvement of 1.5 points in the Scale for the Assessment and Rating of Ataxia (SARA) score after 2 weeks of treatment. In addition, effects on a variety of non-motor symptoms, quality of life, and autonomic nerve dysfunctions are assessed via relative scales. Gait imbalance, dysarthria, and finger dexterity are objectively valued via relative tools. Finally, functional magnetic resonance imaging is performed to explore the possible mechanism of treatment effects. Discussion The results of this study will inform whether repeated sessions of active cerebellar tACS benefit CA patients and whether this form of non-invasive stimulation might be a novel therapeutic approach to consider in a neuro-rehabilitation setting.Clinical Trial Registration: ClinicalTrials.gov, identifier NCT05557786; https://www.clinicaltrials.gov/ct2/show/NCT05557786.
Collapse
Affiliation(s)
- Xia Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lin Zhang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wan-Li Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Xiao-Ping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yan-Hua Lian
- The School of Health, Fujian Medical University, Fuzhou, China
| | - Meng-Cheng Li
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shi-Zhong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- The School of Health, Fujian Medical University, Fuzhou, China
- *Correspondence: Shi-Zhong Wang,
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Xin-Yuan Chen,
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Shi-Rui Gan,
| |
Collapse
|
4
|
He Q, Yang XY, Zhao D, Fang F. Enhancement of visual perception by combining transcranial electrical stimulation and visual perceptual training. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:271-284. [PMID: 37724187 PMCID: PMC10388778 DOI: 10.1515/mr-2022-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 09/20/2023]
Abstract
The visual system remains highly malleable even after its maturity or impairment. Our visual function can be enhanced through many ways, such as transcranial electrical stimulation (tES) and visual perceptual learning (VPL). TES can change visual function rapidly, but its modulation effect is short-lived and unstable. By contrast, VPL can lead to a substantial and long-lasting improvement in visual function, but extensive training is typically required. Theoretically, visual function could be further improved in a shorter time frame by combining tES and VPL than by solely using tES or VPL. Vision enhancement by combining these two methods concurrently is both theoretically and practically significant. In this review, we firstly introduced the basic concept and possible mechanisms of VPL and tES; then we reviewed the current research progress of visual enhancement using the combination of two methods in both general and clinical population; finally, we discussed the limitations and future directions in this field. Our review provides a guide for future research and application of vision enhancement and restoration by combining VPL and tES.
Collapse
Affiliation(s)
- Qing He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xin-Yue Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daiqing Zhao
- Department of Psychology, The Pennsylvania State University, University Park, State College, PA, USA
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Manto M, Argyropoulos GPD, Bocci T, Celnik PA, Corben LA, Guidetti M, Koch G, Priori A, Rothwell JC, Sadnicka A, Spampinato D, Ugawa Y, Wessel MJ, Ferrucci R. Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. CEREBELLUM (LONDON, ENGLAND) 2021; 21:1092-1122. [PMID: 34813040 DOI: 10.1007/s12311-021-01344-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
The cerebellum is involved in multiple closed-loops circuitry which connect the cerebellar modules with the motor cortex, prefrontal, temporal, and parietal cortical areas, and contribute to motor control, cognitive processes, emotional processing, and behavior. Among them, the cerebello-thalamo-cortical pathway represents the anatomical substratum of cerebellum-motor cortex inhibition (CBI). However, the cerebellum is also connected with basal ganglia by disynaptic pathways, and cerebellar involvement in disorders commonly associated with basal ganglia dysfunction (e.g., Parkinson's disease and dystonia) has been suggested. Lately, cerebellar activity has been targeted by non-invasive brain stimulation (NIBS) techniques including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to indirectly affect and tune dysfunctional circuitry in the brain. Although the results are promising, several questions remain still unsolved. Here, a panel of experts from different specialties (neurophysiology, neurology, neurosurgery, neuropsychology) reviews the current results on cerebellar NIBS with the aim to derive the future steps and directions needed. We discuss the effects of TMS in the field of cerebellar neurophysiology, the potentials of cerebellar tDCS, the role of animal models in cerebellar NIBS applications, and the possible application of cerebellar NIBS in motor learning, stroke recovery, speech and language functions, neuropsychiatric and movement disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium.,Service Des Neurosciences, UMons, 7000, Mons, Belgium
| | - Georgios P D Argyropoulos
- Division of Psychology, Faculty of Natural Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville. Victoria, Australia
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Giacomo Koch
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, UK.,Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Danny Spampinato
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy. .,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
6
|
Abbasi A, Danielsen NP, Leung J, Muhammad AKMG, Patel S, Gulati T. Epidural cerebellar stimulation drives widespread neural synchrony in the intact and stroke perilesional cortex. J Neuroeng Rehabil 2021; 18:89. [PMID: 34039346 PMCID: PMC8157634 DOI: 10.1186/s12984-021-00881-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebellar electrical stimulation has shown promise in improving motor recovery post-stroke in both rodent and human studies. Past studies have used motor evoked potentials (MEPs) to evaluate how cerebellar stimulation modulates ongoing activity in the cortex, but the underlying mechanisms are incompletely understood. Here we used invasive electrophysiological recordings from the intact and stroke-injured rodent primary motor cortex (M1) to assess how epidural cerebellar stimulation modulates neural dynamics at the level of single neurons as well as at the level of mesoscale dynamics. METHODS We recorded single unit spiking and local field potentials (LFPs) in both the intact and acutely stroke-injured M1 contralateral to the stimulated cerebellum in adult Long-Evans rats under anesthesia. We analyzed changes in the firing rates of single units, the extent of synchronous spiking and power spectral density (PSD) changes in LFPs during and post-stimulation. RESULTS Our results show that post-stimulation, the firing rates of a majority of M1 neurons changed significantly with respect to their baseline rates. These firing rate changes were diverse in character, as the firing rate of some neurons increased while others decreased. Additionally, these changes started to set in during stimulation. Furthermore, cross-correlation analysis showed a significant increase in coincident firing amongst neuronal pairs. Interestingly, this increase in synchrony was unrelated to the direction of firing rate change. We also found that neuronal ensembles derived through principal component analysis were more active post-stimulation. Lastly, these changes occurred without a significant change in the overall spectral power of LFPs post-stimulation. CONCLUSIONS Our results show that cerebellar stimulation caused significant, long-lasting changes in the activity patterns of M1 neurons by altering firing rates, boosting neural synchrony and increasing neuronal assemblies' activation strength. Our study provides evidence that cerebellar stimulation can directly modulate cortical dynamics. Since these results are present in the perilesional cortex, our data might also help explain the facilitatory effects of cerebellar stimulation post-stroke.
Collapse
Affiliation(s)
- Aamir Abbasi
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nathan P Danielsen
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer Leung
- PhD Program in Biomedical Sciences, Graduate School of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - A K M G Muhammad
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saahil Patel
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tanuj Gulati
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA. .,Department of Bioengineering, Henri Samueli School of Engineering, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Asan AS, Lang EJ, Sahin M. Entrainment of cerebellar purkinje cells with directional AC electric fields in anesthetized rats. Brain Stimul 2020; 13:1548-1558. [PMID: 32919090 PMCID: PMC7722055 DOI: 10.1016/j.brs.2020.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (tES) shows promise to treat neurological disorders. Knowledge of how the orthogonal components of the electric field (E-field) alter neuronal activity is required for strategic placement of transcranial electrodes. Yet, essentially no information exists on this relationship for mammalian cerebellum in vivo, despite the cerebellum being a target for clinical tES studies. OBJECTIVE To characterize how cerebellar Purkinje cell (PC) activity varies with the intensity, frequency, and direction of applied AC and DC E-fields. METHODS Extracellular recordings were obtained from vermis lobule 7 PCs in anesthetized rats. AC (2-100 Hz) or DC E-fields were generated in a range of intensities (0.75-30 mV/mm) in three orthogonal directions. Field-evoked PC simple spike activity was characterized in terms of firing rate modulation and phase-locking as a function of these parameters. t-tests were used for statistical comparisons. RESULTS The effect of applied E-fields was direction and intensity dependent, with rostrocaudally directed fields causing stronger modulations than dorsoventral fields and mediolaterally directed ones causing little to no effect, on average. The directionality dependent modulation suggests that PC is the primary cell type affected the most by electric stimulation, and this effect was probably given rise by a large dendritic tree and a soma. AC stimulation entrained activity in a frequency dependent manner, with stronger phase-locking to the stimulus cycle at higher frequencies. DC fields produced a modulation consisting of strong transients at current onset and offset with an intervening plateau. CONCLUSION Orientation of the exogenous E-field critically determines the modulation depth of cerebellar cortical output. With properly oriented fields, PC simple spike activity can strongly be entrained by AC fields, overriding the spontaneous firing pattern.
Collapse
Affiliation(s)
- Ahmet S Asan
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, Science Building, New York, NY, 07102, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA.
| |
Collapse
|