1
|
Depuydt E, Criel Y, De Letter M, van Mierlo P. Investigating the effect of template head models on Event-Related Potential source localization: a simulation and real-data study. Front Neurosci 2024; 18:1443752. [PMID: 39440187 PMCID: PMC11493687 DOI: 10.3389/fnins.2024.1443752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Event-Related Potentials (ERPs) are valuable for studying brain activity with millisecond-level temporal resolution. While the temporal resolution of this technique is excellent, the spatial resolution is limited. Source localization aims to identify the brain regions generating the EEG data, thus increasing the spatial resolution, but its accuracy depends heavily on the head model used. This study compares the performance of subject-specific and template-based head models in both simulated and real-world ERP localization tasks. Methods Simulated data mimicking realistic ERPs was created to evaluate the impact of head model choice systematically, after which subject-specific and template-based head models were used for the reconstruction of the data. The different modeling approaches were also applied to a face recognition dataset. Results The results indicate that the template models capture the simulated activity less accurately, producing more spurious sources and identifying less true sources correctly. Furthermore, the results show that while creating more accurate and detailed head models is beneficial for the localization accuracy when using subject-specific head models, this is less the case for template head models. The main N170 source of the face recognition dataset was correctly localized to the fusiform gyrus, a known face processing area, using the subject-specific models. Apart from the fusiform gyrus, the template models also reconstructed several other sources, illustrating the localization inaccuracies. Discussion While template models allow researchers to investigate the neural generators of ERP components when no subject-specific MRIs are available, it could lead to misinterpretations. Therefore, it is important to consider a priori knowledge and hypotheses when interpreting results obtained with template head models, acknowledging potential localization errors.
Collapse
Affiliation(s)
- Emma Depuydt
- Medical Imaging and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Yana Criel
- BrainComm Research Group, Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Miet De Letter
- BrainComm Research Group, Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Pieter van Mierlo
- Medical Imaging and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn 2022; 16:17-41. [PMID: 35126769 PMCID: PMC8807775 DOI: 10.1007/s11571-021-09689-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/25/2021] [Accepted: 05/31/2021] [Indexed: 02/03/2023] Open
Abstract
Brain network analysis is one efficient tool in exploring human brain diseases and can differentiate the alterations from comparative networks. The alterations account for time, mental states, tasks, individuals, and so forth. Furthermore, the changes determine the segregation and integration of functional networks that lead to network reorganization (or reconfiguration) to extend the neuroplasticity of the brain. Exploring related brain networks should be of interest that may provide roadmaps for brain research and clinical diagnosis. Recent electroencephalogram (EEG) studies have revealed the secrets of the brain networks and diseases (or disorders) within and between subjects and have provided instructive and promising suggestions and methods. This review summarized the corresponding algorithms that had been used to construct functional or effective networks on the scalp and cerebral cortex. We reviewed EEG network analysis that unveils more cognitive functions and neural disorders of the human and then explored the relationship between brain science and artificial intelligence which may fuel each other to accelerate their advances, and also discussed some innovations and future challenges in the end.
Collapse
|
3
|
Pascucci D, Tourbier S, Rué-Queralt J, Carboni M, Hagmann P, Plomp G. Source imaging of high-density visual evoked potentials with multi-scale brain parcellations and connectomes. Sci Data 2022; 9:9. [PMID: 35046430 PMCID: PMC8770500 DOI: 10.1038/s41597-021-01116-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
We describe the multimodal neuroimaging dataset VEPCON (OpenNeuro Dataset ds003505). It includes raw data and derivatives of high-density EEG, structural MRI, diffusion weighted images (DWI) and single-trial behavior (accuracy, reaction time). Visual evoked potentials (VEPs) were recorded while participants (n = 20) discriminated briefly presented faces from scrambled faces, or coherently moving stimuli from incoherent ones. EEG and MRI were recorded separately from the same participants. The dataset contains raw EEG and behavioral data, pre-processed EEG of single trials in each condition, structural MRIs, individual brain parcellations at 5 spatial resolutions (83 to 1015 regions), and the corresponding structural connectomes computed from fiber count, fiber density, average fractional anisotropy and mean diffusivity maps. For source imaging, VEPCON provides EEG inverse solutions based on individual anatomy, with Python and Matlab scripts to derive activity time-series in each brain region, for each parcellation level. The BIDS-compatible dataset can contribute to multimodal methods development, studying structure-function relations, and to unimodal optimization of source imaging and graph analyses, among many other possibilities.
Collapse
Affiliation(s)
- David Pascucci
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland.
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sebastien Tourbier
- Connectomics Lab, Dept. of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Joan Rué-Queralt
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
- Connectomics Lab, Dept. of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Margherita Carboni
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Dept. of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Gijs Plomp
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
4
|
Di Marco R, Rubega M, Lennon O, Formaggio E, Sutaj N, Dazzi G, Venturin C, Bonini I, Ortner R, Cerrel Bazo HA, Tonin L, Tortora S, Masiero S, Del Felice A. Experimental Protocol to Assess Neuromuscular Plasticity Induced by an Exoskeleton Training Session. Methods Protoc 2021; 4:48. [PMID: 34287357 PMCID: PMC8293335 DOI: 10.3390/mps4030048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Exoskeleton gait rehabilitation is an emerging area of research, with potential applications in the elderly and in people with central nervous system lesions, e.g., stroke, traumatic brain/spinal cord injury. However, adaptability of such technologies to the user is still an unmet goal. Despite important technological advances, these robotic systems still lack the fine tuning necessary to adapt to the physiological modification of the user and are not yet capable of a proper human-machine interaction. Interfaces based on physiological signals, e.g., recorded by electroencephalography (EEG) and/or electromyography (EMG), could contribute to solving this technological challenge. This protocol aims to: (1) quantify neuro-muscular plasticity induced by a single training session with a robotic exoskeleton on post-stroke people and on a group of age and sex-matched controls; (2) test the feasibility of predicting lower limb motor trajectory from physiological signals for future use as control signal for the robot. An active exoskeleton that can be set in full mode (i.e., the robot fully replaces and drives the user motion), adaptive mode (i.e., assistance to the user can be tuned according to his/her needs), and free mode (i.e., the robot completely follows the user movements) will be used. Participants will undergo a preparation session, i.e., EMG sensors and EEG cap placement and inertial sensors attachment to measure, respectively, muscular and cortical activity, and motion. They will then be asked to walk in a 15 m corridor: (i) self-paced without the exoskeleton (pre-training session); (ii) wearing the exoskeleton and walking with the three modes of use; (iii) self-paced without the exoskeleton (post-training session). From this dataset, we will: (1) quantitatively estimate short-term neuroplasticity of brain connectivity in chronic stroke survivors after a single session of gait training; (2) compare muscle activation patterns during exoskeleton-gait between stroke survivors and age and sex-matched controls; and (3) perform a feasibility analysis on the use of physiological signals to decode gait intentions.
Collapse
Affiliation(s)
- Roberto Di Marco
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Olive Lennon
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, 4 Dublin, Ireland;
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Ngadhnjim Sutaj
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; (N.S.); (R.O.)
| | - Giacomo Dazzi
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Chiara Venturin
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Ilenia Bonini
- Ospedale Riabilitativo di Alta Specializzazione di Motta di Livenza, 31045 Treviso, Italy; (I.B.); (H.A.C.B.)
| | - Rupert Ortner
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; (N.S.); (R.O.)
| | | | - Luca Tonin
- Department of Information Engineering, University of Padova, 35131 Padova, Italy; (L.T.); (S.T.)
| | - Stefano Tortora
- Department of Information Engineering, University of Padova, 35131 Padova, Italy; (L.T.); (S.T.)
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Alessandra Del Felice
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | | |
Collapse
|
5
|
Pascucci D, Rubega M, Plomp G. Modeling time-varying brain networks with a self-tuning optimized Kalman filter. PLoS Comput Biol 2020; 16:e1007566. [PMID: 32804971 PMCID: PMC7451990 DOI: 10.1371/journal.pcbi.1007566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/27/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Brain networks are complex dynamical systems in which directed interactions between different areas evolve at the sub-second scale of sensory, cognitive and motor processes. Due to the highly non-stationary nature of neural signals and their unknown noise components, however, modeling dynamic brain networks has remained one of the major challenges in contemporary neuroscience. Here, we present a new algorithm based on an innovative formulation of the Kalman filter that is optimized for tracking rapidly evolving patterns of directed functional connectivity under unknown noise conditions. The Self-Tuning Optimized Kalman filter (STOK) is a novel adaptive filter that embeds a self-tuning memory decay and a recursive regularization to guarantee high network tracking accuracy, temporal precision and robustness to noise. To validate the proposed algorithm, we performed an extensive comparison against the classical Kalman filter, in both realistic surrogate networks and real electroencephalography (EEG) data. In both simulations and real data, we show that the STOK filter estimates time-frequency patterns of directed connectivity with significantly superior performance. The advantages of the STOK filter were even clearer in real EEG data, where the algorithm recovered latent structures of dynamic connectivity from epicranial EEG recordings in rats and human visual evoked potentials, in excellent agreement with known physiology. These results establish the STOK filter as a powerful tool for modeling dynamic network structures in biological systems, with the potential to yield new insights into the rapid evolution of network states from which brain functions emerge. During normal behavior, brains transition between functional network states several times per second. This allows humans to quickly read a sentence, and a frog to catch a fly. Understanding these fast network dynamics is fundamental to understanding how brains work, but up to now it has proven very difficult to model fast brain dynamics for various methodological reasons. To overcome these difficulties, we designed a new Kalman filter (STOK) by innovating on previous solutions from control theory and state-space modelling. We show that STOK accurately models fast network changes in simulations and real neural data, making it an essential new tool for modelling fast brain networks in the time and frequency domain.
Collapse
Affiliation(s)
- D Pascucci
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland.,Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M Rubega
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland.,Department of Neurosciences, University of Padova, Padova, Italy
| | - G Plomp
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Altered directed functional connectivity of the right amygdala in depression: high-density EEG study. Sci Rep 2020; 10:4398. [PMID: 32157152 PMCID: PMC7064485 DOI: 10.1038/s41598-020-61264-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
The cortico-striatal-pallidal-thalamic and limbic circuits are suggested to play a crucial role in the pathophysiology of depression. Stimulation of deep brain targets might improve symptoms in treatment-resistant depression. However, a better understanding of connectivity properties of deep brain structures potentially implicated in deep brain stimulation (DBS) treatment is needed. Using high-density EEG, we explored the directed functional connectivity at rest in 25 healthy subjects and 26 patients with moderate to severe depression within the bipolar affective disorder, depressive episode, and recurrent depressive disorder. We computed the Partial Directed Coherence on the source EEG signals focusing on the amygdala, anterior cingulate, putamen, pallidum, caudate, and thalamus. The global efficiency for the whole brain and the local efficiency, clustering coefficient, outflow, and strength for the selected structures were calculated. In the right amygdala, all the network metrics were significantly higher (p < 0.001) in patients than in controls. The global efficiency was significantly higher (p < 0.05) in patients than in controls, showed no correlation with status of depression, but decreased with increasing medication intake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf{R}}}^{{\bf{2}}}{\boldsymbol{=}}{\bf{0.59}}\,{\bf{and}}\,{\bf{p}}{\boldsymbol{=}}{\bf{1.52}}{\bf{e}}{\boldsymbol{ \mbox{-} }}{\bf{05}}$$\end{document}R2=0.59andp=1.52e‐05). The amygdala seems to play an important role in neurobiology of depression. Practical treatment studies would be necessary to assess the amygdala as a potential future DBS target for treating depression.
Collapse
|