1
|
Hosseini F, Asadi F, Rabiei R, Kiani F, Harari RE. Applications of artificial intelligence in diagnosis of uncommon cystoid macular edema using optical coherence tomography imaging: A systematic review. Surv Ophthalmol 2024; 69:937-944. [PMID: 38942125 DOI: 10.1016/j.survophthal.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Cystoid macular edema (CME) is a sight-threatening condition often associated with inflammatory and diabetic diseases. Early detection is crucial to prevent irreversible vision loss. Artificial intelligence (AI) has shown promise in automating CME diagnosis through optical coherence tomography (OCT) imaging, but its utility needs critical evaluation. This systematic review assesses the application of AI to diagnosis CME, specifically focusing on disorders like postoperative CME (Irvine Gass syndrome) and retinitis pigmentosa without obvious vasculopathy, using OCT imaging. A comprehensive search was conducted across 6 databases (PubMed, Scopus, Web of Science, Wiley, ScienceDirect, and IEEE) from 2018 to November, 2023. Twenty-three articles met the inclusion criteria and were selected for in-depth analysis. We evaluate AI's role in CME diagnosis and its performance in "detection", "classification", and "segmentation" of OCT retinal images. We found that convolutional neural network (CNN)-based methods consistently outperformed other machine learning techniques, achieving an average accuracy of over 96 % in detecting and identifying CME from OCT images. Despite certain limitations such as dataset size and ethical concerns, the synergy between AI and OCT, particularly through CNNs, holds promise for significantly advancing CME diagnostics.
Collapse
Affiliation(s)
- Farhang Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Rabiei
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Kiani
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rayan Ebnali Harari
- STRATUS Center for Medical Simulation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Karn PK, Abdulla WH. Precision Segmentation of Subretinal Fluids in OCT Using Multiscale Attention-Based U-Net Architecture. Bioengineering (Basel) 2024; 11:1032. [PMID: 39451407 PMCID: PMC11504175 DOI: 10.3390/bioengineering11101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
This paper presents a deep-learning architecture for segmenting retinal fluids in patients with Diabetic Macular Oedema (DME) and Age-related Macular Degeneration (AMD). Accurate segmentation of multiple fluid types is critical for diagnosis and treatment planning, but existing techniques often struggle with precision. We propose an encoder-decoder network inspired by U-Net, processing enhanced OCT images and their edge maps. The encoder incorporates Residual and Inception modules with an autoencoder-based multiscale attention mechanism to extract detailed features. Our method shows superior performance across several datasets. On the RETOUCH dataset, the network achieved F1 Scores of 0.82 for intraretinal fluid (IRF), 0.93 for subretinal fluid (SRF), and 0.94 for pigment epithelial detachment (PED). The model also performed well on the OPTIMA and DUKE datasets, demonstrating high precision, recall, and F1 Scores. This architecture significantly enhances segmentation accuracy and edge precision, offering a valuable tool for diagnosing and managing retinal diseases. Its integration of dual-input processing, multiscale attention, and advanced encoder modules highlights its potential to improve clinical outcomes and advance retinal disease treatment.
Collapse
Affiliation(s)
- Prakash Kumar Karn
- Department of Electrical, Computer, and Software Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Waleed H. Abdulla
- Department of Electrical, Computer, and Software Engineering, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Mousavi N, Monemian M, Ghaderi Daneshmand P, Mirmohammadsadeghi M, Zekri M, Rabbani H. Cyst identification in retinal optical coherence tomography images using hidden Markov model. Sci Rep 2023; 13:12. [PMID: 36593300 PMCID: PMC9807649 DOI: 10.1038/s41598-022-27243-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Optical Coherence Tomography (OCT) is a useful imaging modality facilitating the capturing process from retinal layers. In the salient diseases of retina, cysts are formed in retinal layers. Therefore, the identification of cysts in the retinal layers is of great importance. In this paper, a new method is proposed for the rapid detection of cystic OCT B-scans. In the proposed method, a Hidden Markov Model (HMM) is used for mathematically modelling the existence of cyst. In fact, the existence of cyst in the image can be considered as a hidden state. Since the existence of cyst in an OCT B-scan depends on the existence of cyst in the previous B-scans, HMM is an appropriate tool for modelling this process. In the first phase, a number of features are extracted which are Harris, KAZE, HOG, SURF, FAST, Min-Eigen and feature extracted by deep AlexNet. It is shown that the feature with the best discriminating power is the feature extracted by AlexNet. The features extracted in the first phase are used as observation vectors to estimate the HMM parameters. The evaluation results show the improved performance of HMM in terms of accuracy.
Collapse
Affiliation(s)
- Niloofarsadat Mousavi
- grid.411751.70000 0000 9908 3264Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Maryam Monemian
- grid.411036.10000 0001 1498 685XMedical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Ghaderi Daneshmand
- grid.411036.10000 0001 1498 685XMedical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Maryam Zekri
- grid.411751.70000 0000 9908 3264Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Hossein Rabbani
- grid.411036.10000 0001 1498 685XMedical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Pavithra K, Kumar P, Geetha M, Bhandary SV. Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images. SENSORS 2022; 22:s22083055. [PMID: 35459040 PMCID: PMC9029682 DOI: 10.3390/s22083055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
With non-invasive and high-resolution properties, optical coherence tomography (OCT) has been widely used as a retinal imaging modality for the effective diagnosis of ophthalmic diseases. The retinal fluid is often segmented by medical experts as a pivotal biomarker to assist in the clinical diagnosis of age-related macular diseases, diabetic macular edema, and retinal vein occlusion. In recent years, the advanced machine learning methods, such as deep learning paradigms, have attracted more and more attention from academia in the retinal fluid segmentation applications. The automatic retinal fluid segmentation based on deep learning can improve the semantic segmentation accuracy and efficiency of macular change analysis, which has potential clinical implications for ophthalmic pathology detection. This article summarizes several different deep learning paradigms reported in the up-to-date literature for the retinal fluid segmentation in OCT images. The deep learning architectures include the backbone of convolutional neural network (CNN), fully convolutional network (FCN), U-shape network (U-Net), and the other hybrid computational methods. The article also provides a survey on the prevailing OCT image datasets used in recent retinal segmentation investigations. The future perspectives and some potential retinal segmentation directions are discussed in the concluding context.
Collapse
|
6
|
Pawan SJ, Sankar R, Jain A, Jain M, Darshan DV, Anoop BN, Kothari AR, Venkatesan M, Rajan J. Capsule Network-based architectures for the segmentation of sub-retinal serous fluid in optical coherence tomography images of central serous chorioretinopathy. Med Biol Eng Comput 2021; 59:1245-1259. [PMID: 33988817 DOI: 10.1007/s11517-021-02364-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
Central serous chorioretinopathy (CSCR) is a chorioretinal disorder of the eye characterized by serous detachment of the neurosensory retina at the posterior pole of the eye. CSCR results from the accumulation of subretinal fluid (SRF) due to idiopathic defects at the level of the retinal pigment epithelial (RPE) that allows serous fluid from the choriocapillaris to diffuse into the subretinal space between RPE and neurosensory retinal layers. This condition is presently investigated by clinicians using invasive angiography or non-invasive optical coherence tomography (OCT) imaging. OCT images provide a representation of the fluid underlying the retina, and in the absence of automated segmentation tools, currently only a qualitative assessment of the same is used to follow the progression of the disease. Automated segmentation of the SRF can prove to be extremely useful for the assessment of progression and for the timely management of CSCR. In this paper, we adopt an existing architecture called SegCaps, which is based on the recently introduced Capsule Networks concept, for the segmentation of SRF from CSCR OCT images. Furthermore, we propose an enhancement to SegCaps, which we have termed as DRIP-Caps, that utilizes the concepts of Dilation, Residual Connections, Inception Blocks, and Capsule Pooling to address the defined problem. The proposed model outperforms the benchmark UNet architecture while reducing the number of trainable parameters by 54.21%. Moreover, it reduces the computation complexity of SegCaps by reducing the number of trainable parameters by 37.85%, with competitive performance. The experiments demonstrate the generalizability of the proposed model, as evidenced by its remarkable performance even with a limited number of training samples. Graphical abstract is mandatory please provide.
Collapse
Affiliation(s)
- S J Pawan
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India.
| | - Rahul Sankar
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Anubhav Jain
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Mahir Jain
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - D V Darshan
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - B N Anoop
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
| | | | - M Venkatesan
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Jeny Rajan
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
| |
Collapse
|